Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T07:56:27.931Z Has data issue: false hasContentIssue false

1 - Apoptosis in health, disease, and therapy: overview and methodology

Published online by Cambridge University Press:  03 March 2010

Eric C. LaCasse
Affiliation:
Ægera Oncology Inc.
Martin Holcik
Affiliation:
Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute
Robert G. Korneluk
Affiliation:
Departments of Pediatrics, and Biochemistry, Microbiology, and Immunology, University of Ottawa Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute
Alex E. MacKenzie
Affiliation:
Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute
Martin Holcik
Affiliation:
University of Ottawa
Eric C. LaCasse
Affiliation:
University of Ottawa
Alex E. MacKenzie
Affiliation:
University of Ottawa
Robert G. Korneluk
Affiliation:
University of Ottawa
Get access

Summary

Introduction: life cannot exist without cellular death

Apoptosis, or programmed cell death, is the mechanism by which most cells die both physiologically and pathologically. The realization in the mid 1980s that cells die by an active, genetically defined process changed not only our views on cellular life but led to a whole new discipline of biologic study with significant implications for medicine (Thompson, 1995; Robertson et al., 2002). Apoptosis research has advanced our understanding of a basic cellular process, shed insight into many diseases, and is poised to affect the future practice of medicine by the introduction of therapies targeting this cell death process.

In this book, the term “apoptosis” is used synonymously, for right or wrong, with programmed cell death (PCD). While PCD may be a more appropriate term, encompassing all forms of active physiological cell death, apoptosis, which is defined morphologically and biochemically, is used here for historical purposes (Lockshin and Zakeri, 2002; Melino, 2002; Sloviter, 2002). The original “anatomical” characteristics of apoptosis were noted in the nineteenth century (reviewed in Clarke and Clarke, 1996; Rich et al., 1999). However, it was not until publications in 1951 and in the 1960s described developmental cell death or “shrinkage necrosis” that the PCD concept was recognized, re-introduced, and formalized (Lockshin and Zakeri, 2001; Kerr, 2002; Vaux, 2002). The term “apoptosis” was coined in 1972, referring to this morphologically defined form of cell death (Kerr et al., 1972).

Type
Chapter
Information
Apoptosis in Health and Disease
Clinical and Therapeutic Aspects
, pp. 1 - 48
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell, 9, 423–32CrossRefGoogle ScholarPubMed
Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol., 3, 745–56CrossRefGoogle ScholarPubMed
Alam, A., Cohen, L. Y., Aouad, S., and Sekaly, R. P. (1999). Early activation of caspases during T lymphocyte stimulation results in selective substrate cleavage in nonapoptotic cells. J. Exp. Med., 190, 1879–90CrossRefGoogle Scholar
Alizadeh, A. A., Eisen, M. B., Davis, R. E.et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503–11CrossRefGoogle ScholarPubMed
Altieri, D. C. (2003). Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer, 3, 46–54CrossRefGoogle ScholarPubMed
Ameisen, J. C. (2002). On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ., 9, 367–93CrossRefGoogle ScholarPubMed
Andreakos, E. (2003). Targeting cytokines in autoimmunity: new approaches, new promise. Expert. Opin. Biol. Ther., 3, 435–47CrossRefGoogle ScholarPubMed
Aravind, L., Dixit, V. M., and Koonin, E. V. (2001). Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science, 291, 1279–84CrossRefGoogle ScholarPubMed
Arnoult, D., Gaume, B., Karbowski, M., Sharpe, J. C., Cecconi, F., and Youle, R. J. (2003). Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. Embo. J., 22, 4385–99CrossRefGoogle ScholarPubMed
Asselbergs, F. A. and Widmer, R. (2003). Rapid detection of apoptosis through real-time reverse transcriptase polymerase chain reaction measurement of the small cytoplasmic RNA Y1. Anal. Biochem., 318, 221–9CrossRefGoogle ScholarPubMed
Baehrecke, E. H. (2002). How death shapes life during development. Nat. Rev. Mol. Cell Biol., 3, 779–87CrossRefGoogle ScholarPubMed
Baell, J. B. and Huang, D. C. (2002). Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs. Biochem. Pharmacol., 64, 851–63CrossRefGoogle ScholarPubMed
Bai, L., Wang, J., Yin, X.-M., and Dong, Z. (2003). Analysis of apoptosis-basic principles and procedures. In Essentials of Apoptosis: A Guide for Basic and Clinical Research, ed. X.-M. Yin and Z. Dong. Totowa, NJ: Humana Press Inc., pp. 239–51CrossRef
Barry, M. and Bleackley, R. C. (2002). Cytotoxic T lymphocytes: all roads lead to death. Nat. Rev. Immunol., 2, 401–9CrossRefGoogle Scholar
Beauparlant, P. and Shore, G. C. (2003). Therapeutic activation of caspases in cancer: a question of selectivity. Curr. Opin. Drug Discov. Devel., 6, 179–87Google ScholarPubMed
Belhocine, T., Steinmetz, N., Hustinx, R.et al. (2002). Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin. Cancer Res., 8, 2766–74Google ScholarPubMed
Bell, J. C., Lichty, B., and Stojdl, D. (2003). Getting oncolytic virus therapies off the ground. Cancer Cell, 4, 7–11CrossRefGoogle Scholar
Benitez-Bribiesca, L. (2003). The two pathways of apoptosis: one led to Stockholm, the other led home. Arch. Med. Res., 34, 1–2CrossRefGoogle ScholarPubMed
Bertin, J. and DiStefano, P. S. (2000). The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ., 7, 1273–4CrossRefGoogle ScholarPubMed
Bignell, G. R., Warren, W., Seal, S.et al. (2000). Identification of the familial cylindromatosis tumour-suppressor gene. Nat. Genet., 25, 160–5Google ScholarPubMed
Bilsland, J. and Harper, S. (2002). Caspases and neuroprotection. Curr. Opin. Investig. Drugs, 3, 1745–52Google ScholarPubMed
Boatright, K. M., Renatus, M., Scott, F. L.et al. (2003). A unified model for apical caspase activation. Mol. Cell, 11, 529–41CrossRefGoogle ScholarPubMed
Bohm, C., Hanski, M. L., Gratchev, A.et al. (1998). A modification of the JAM test is necessary for a correct determination of apoptosis induced by FasL+ adherent tumor cells. J. Immunol. Methods, 217, 71–8CrossRefGoogle ScholarPubMed
Bortner, C. D. and Cidlowski, J. A. (2002). Cellular mechanisms for the repression of apoptosis. Annu. Rev. Pharmacol. Toxicol., 42, 259–81CrossRefGoogle Scholar
Bouchier-Hayes, L. and Martin, S. J. (2002). CARD games in apoptosis and immunity. EMBO. Rep., 3, 616–21CrossRefGoogle ScholarPubMed
Brady, K. D. (1998). Bimodal inhibition of caspase-1 by aryloxymethyl and acyloxymethyl ketones. Biochemistry, 37, 8508–15CrossRefGoogle ScholarPubMed
Brauer, M. (2003). In vivo monitoring of apoptosis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 27, 323–31CrossRefGoogle Scholar
Brekke, O. H. and Sandlie, I. (2003). Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov., 2, 52–62CrossRefGoogle ScholarPubMed
Brummelkamp, T. R., Nijman, S. M., Dirac, A. M., and Bernards, R. (2003). Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 424, 797–801CrossRefGoogle ScholarPubMed
Bullock, A. N. and Fersht, A. R. (2001). Rescuing the function of mutant p53. Nat. Rev. Cancer, 1, 68–76CrossRefGoogle ScholarPubMed
Bykov, V. J., Issaeva, N., Shilov, A.et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat. Med., 8, 282–8CrossRefGoogle ScholarPubMed
Bykov, V. J., Selivanova, G., and Wiman, K. G. (2003). Small molecules that reactivate mutant p53. Eur. J. Cancer, 39, 1828–34CrossRefGoogle ScholarPubMed
Cai, S. X., Nguyen, B., Jia, S.et al. (2003). Discovery of substituted N-phenyl nicotinamides as potent inducers of apoptosis using a cell- and caspase-based high throughput screening assay. J. Med. Chem., 46, 2474–81CrossRefGoogle ScholarPubMed
Capparelli, C., Morony, S., Warmington, K.et al. (2003). Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J. Bone Miner. Res., 18, 852–8CrossRefGoogle ScholarPubMed
Carter, B. Z., Wang, R. Y., Schober, W. D., Milella, M., Chism, D., and Andreeff, M. (2003). Targeting survivin expression induces cell proliferation defect and subsequent cell death involving mitochondrial pathway in myeloid leukemic cells. Cell Cycle, 2, 488–93CrossRefGoogle ScholarPubMed
Castedo, M., Ferri, K., Roumier, T., Metivier, D., Zamzami, N., and Kroemer, G. (2002). Quantitation of mitochondrial alterations associated with apoptosis. J. Immunol. Methods, 265, 39–47CrossRefGoogle ScholarPubMed
Cesura, A. M., Pinard, E., Schubenel, R.et al. (2003). The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J. Biol. Chem., 278, 49812–18CrossRefGoogle ScholarPubMed
Chamaillard, M., Girardin, S. E., Viala, J., and Philpott, D. J. (2003). Nods, nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol., 5, 581–92CrossRefGoogle ScholarPubMed
Chandra, D. and Tang, D. G. (2003). Mitochondrially localized active caspase-9 and caspase-3 result mostly from translocation from the cytosol and partly from caspase-mediated activation in the organelle. Lack of evidence for Apaf-1-mediated procaspase-9 activation in the mitochondria. J. Biol. Chem., 278, 17408–20CrossRefGoogle ScholarPubMed
Chang, D. W., Ditsworth, D., Liu, H., Srinivasula, S. M., Alnemri, E. S., and Yang, X. (2003). Oligomerization is a general mechanism for the activation of apoptosis initiator and inflammatory procaspases. J. Biol. Chem., 278, 16466–9CrossRefGoogle ScholarPubMed
Chapman, J. G., Magee, W. P., Stukenbrok, H. A., Beckius, G. E., Milici, A. J., and Tracey, W. R. (2002). A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin, reduces myocardial ischemic injury. Eur. J. Pharmacol., 456, 59–68CrossRefGoogle ScholarPubMed
Chen, L., Agrawal, S., Zhou, W., Zhang, R., and Chen, J. (1998). Synergistic activation of p53 by inhibition of MDM2 expression and DNA damage. Proc. Natl. Acad. Sci. USA, 95, 195–200CrossRefGoogle ScholarPubMed
Chen, M., Ona, V. O., Li, M.et al. (2000). Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med., 6, 797–801Google Scholar
Chen, M., Orozco, A., Spencer, D. M., and Wang, J. (2002). Activation of initiator caspases through a stable dimeric intermediate. J. Biol. Chem., 277, 50761–7CrossRefGoogle ScholarPubMed
Chene, P. (2003). Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nat. Rev. Cancer, 3, 102–9CrossRefGoogle ScholarPubMed
Cheng, T., Liu, D., Griffin, J. H.et al. (2003). Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat. Med., 9, 338–42CrossRefGoogle ScholarPubMed
Cilenti, L., Lee, Y., Hess, S.et al. (2003). Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J. Biol. Chem., 278, 11489–94CrossRefGoogle ScholarPubMed
Clamp, M., Andrews, D., Barker, D.et al. (2003). Ensembl 2002: accommodating comparative genomics. Nucleic Acids Res., 31, 38–42CrossRefGoogle ScholarPubMed
Clarke, P. G. and Clarke, S. (1996). Nineteenth century research on naturally occurring cell death and related phenomena. Anat. Embryol. (Berl.), 193, 81–99CrossRefGoogle ScholarPubMed
Clarke, P. R. (2002). Apoptosis: lessons from cell-free systems. In Apoptosis: The Molecular Biology of Programmed Cell Death, ed. M. D. Jacobson and N. McCarthy. Oxford: Oxford University Press, pp. 176–99
Cleary, M. L., Smith, S. D., and Sklar, J. (1986). Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell, 47, 19–28CrossRefGoogle Scholar
Coney, L. R., Daniel, P. T., Sanborn, D.et al. (1994). Apoptotic cell death induced by a mouse-human anti-APO-1 chimeric antibody leads to tumor regression. Int. J. Cancer, 58, 562–7CrossRefGoogle ScholarPubMed
Conte, D., Liston, P., Wong, J. W., Wright, K. E., and Korneluk, R. G. (2001). Thymocyte-targeted overexpression of xiap transgene disrupts T lymphoid apoptosis and maturation. Proc. Natl. Acad. Sci. USA, 98, 5049–54CrossRefGoogle Scholar
Creagh, E. M., Conroy, H., and Martin, S. J. (2003). Caspase-activation pathways in apoptosis and immunity. Immunol. Rev., 193, 10–21CrossRefGoogle ScholarPubMed
Crocker, S. J., Liston, P., Anisman, H.et al. (2003). Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice. Neurobiol. Dis., 12, 150–61CrossRefGoogle ScholarPubMed
Crocker, S. J., Wigle, N., Liston, P.et al. (2001). NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson's disease. Eur. J. Neurosci., 14, 391–400CrossRefGoogle Scholar
Czarnota, G. J., Kolios, M. C., Abraham, J.et al. (1999). Ultrasound imaging of apoptosis: high-resolution non-invasive monitoring of programmed cell death in vitro, in situ and in vivo. Br. J. Cancer, 81, 520–7CrossRefGoogle ScholarPubMed
Dai, Z., Zhu, W. G., Morrison, C. D.et al. (2003). A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAP1 and cIAP2 as candidate oncogenes. Hum. Mol. Genet., 12, 791–801CrossRefGoogle ScholarPubMed
Davis, R. E., Brown, K. D., Siebenlist, U., and Staudt, L. M. (2001). Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med., 194, 1861–74CrossRefGoogle ScholarPubMed
Debatin, K. M., Poncet, D., and Kroemer, G. (2002). Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene, 21, 8786–803CrossRefGoogle ScholarPubMed
Botton, S., Sabri, S., Daugas, E.et al. (2002). Platelet formation is the consequence of caspase activation within megakaryocytes. Blood, 100, 1310–17CrossRefGoogle ScholarPubMed
Degterev, A., Lugovskoy, A., Cardone, M.et al. (2001). Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xL. Nat. Cell Biol., 3, 173–82CrossRefGoogle ScholarPubMed
DeWeese, T. L., Poel, H., Li, S.et al. (2001). A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res., 61, 7464–72Google ScholarPubMed
Dickman, M. B., Park, Y. K., Oltersdorf, T., Li, W., Clemente, T., and French, R. (2001). Abrogation of disease development in plants expressing animal antiapoptotic genes. Proc. Natl. Acad. Sci. USA, 98, 6957–62CrossRefGoogle ScholarPubMed
Dierlamm, J., Baens, M., Wlodarska, I.et al. (1999). The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood, 93, 3601–9Google Scholar
Dierlamm, J., Murga Penas, E. M., Daibata, M.et al. (2002). The novel t(11;12;18)(q21;q13;q21) represents a variant translocation of the t(11;18)(q21;q21) associated with MALT-type lymphoma. Leukemia, 16, 1863–4CrossRefGoogle Scholar
Diez, E., Lee, S. H., Gauthier, S.et al. (2003). Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat. Genet., 33, 55–60CrossRefGoogle ScholarPubMed
Dinarello, C. A. (2003). Setting the cytokine trap for autoimmunity. Nat. Med., 9, 20–2CrossRefGoogle ScholarPubMed
Doctor, K. S., Reed, J. C., Godzik, A., and Bourne, P. E. (2003). The apoptosis database. Cell Death Differ., 10, 621–33CrossRefGoogle ScholarPubMed
Dorey, E. (2002). Genta strikes bumper deal with Aventis. Nat. Biotechnol., 20, 533–4CrossRefGoogle ScholarPubMed
Drag-Zalesinska, M., Wysocka, T., Dumanska, M., Jagoda, E., and Zabel, M. (2002). Comparison of techniques permitting to detect apoptosis in situ. Folia. Histochem. Cytobiol., 40, 125–6Google ScholarPubMed
Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell, 102, 33–42CrossRefGoogle ScholarPubMed
Duan, W., Zhu, X., Ladenheim, B.et al. (2002). p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann. Neurol., 52, 597–606CrossRefGoogle ScholarPubMed
Duan, W. R., Garner, D. S., Williams, S. D., Funckes-Shippy, C. L., Spath, I. S., and Blomme, E. A. (2003). Comparison of immunohistochemistry for activated caspase-3 and cleaved cytokeratin 18 with the TUNEL method for quantification of apoptosis in histological sections of PC-3 subcutaneous xenografts. J. Pathol., 199, 221–8CrossRefGoogle ScholarPubMed
Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H. (1999). Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem., 68, 383–424CrossRefGoogle ScholarPubMed
Eberhardt, O., Coelln, R. V., Kugler, S.et al. (2000). Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J. Neurosci., 20, 9126–34CrossRefGoogle ScholarPubMed
Ellis, H. M. and Horvitz, H. R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell, 44, 817–29CrossRefGoogle ScholarPubMed
Endrizzi, M. G., Hadinoto, V., Growney, J. D., Miller, W., and Dietrich, W. F. (2000). Genomic sequence analysis of the mouse Naip gene array. Genome Res., 10, 1095–102CrossRefGoogle ScholarPubMed
Enyedy, I. J., Ling, Y., Nacro, K.et al. (2001). Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening. J. Med. Chem., 44, 4313–24CrossRefGoogle ScholarPubMed
Erlanson, D. A., Lam, J. W., Wiesmann, C.et al. (2003). In situ assembly of enzyme inhibitors using extended tethering. Nat. Biotechnol., 21, 308–14CrossRefGoogle ScholarPubMed
Fairbrother, W. J., Gordon, N. C., Humke, E. W.et al. (2001). The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci., 10, 1911–18CrossRefGoogle ScholarPubMed
Ferreira, C. G., Epping, M., Kruyt, F. A., and Giaccone, G. (2002). Apoptosis: target of cancer therapy. Clin. Cancer Res., 8, 2024–34Google ScholarPubMed
Ferri, K. F. and Kroemer, G. (2001). Organelle-specific initiation of cell death pathways. Nat. Cell Biol., 3, E255–63CrossRefGoogle ScholarPubMed
Fesik, S. W. (2000). Insights into programmed cell death through structural biology. Cell, 103, 273–82CrossRefGoogle ScholarPubMed
Fischer, U., Janicke, R. U., and Schulze-Osthoff, K. (2003). Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ., 10, 76–100CrossRefGoogle ScholarPubMed
Fisher, P. B., Gopalkrishnan, R. V., Chada, S.et al. (2003). mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol. Ther., 2, S23–37CrossRefGoogle Scholar
Fong, W. G., Liston, P., Rajcan-Separovic, E., St Jean, M., Craig, C., and Korneluk, R. G. (2000). Expression and genetic analysis of XIAP-associated factor 1 (XAF1) in cancer cell lines. Genomics, 70, 113–22CrossRefGoogle Scholar
Forcet, C., Ye, X., Granger, L., Corset, V., Shin, H., Bredesen, D. E., and Mehlen, P. (2001). The dependence receptor DCC (deleted in colorectal cancer) defines an alternative mechanism for caspase activation. Proc. Natl. Acad. Sci. USA, 98, 3416–21CrossRefGoogle ScholarPubMed
Foster, B. A., Coffey, H. A., Morin, M. J., and Rastinejad, F. (1999). Pharmacological rescue of mutant p53 conformation and function. Science, 286, 2507–10CrossRefGoogle ScholarPubMed
Frankfurt, O. S. and Krishan, A. (2001a). Enzyme-linked immunosorbent assay (ELISA) for the specific detection of apoptotic cells and its application to rapid drug screening. J. Immunol. Methods, 253, 133–44CrossRefGoogle Scholar
Frankfurt, O. S. and Krishan, A. (2001b). Identification of apoptotic cells by formamide-induced DNA denaturation in condensed chromatin. J. Histochem. Cytochem., 49, 369–78CrossRefGoogle Scholar
French, L. E. and Tschopp, J. (2003). Protein-based therapeutic approaches targeting death receptors. Cell Death Differ., 10, 117–23CrossRefGoogle ScholarPubMed
Friedlander, R. M. (2003). Apoptosis and caspases in neurodegenerative diseases. N. Engl. J. Med., 348, 1365–75CrossRefGoogle ScholarPubMed
Fussenegger, M., Bailey, J. E., and Varner, J. (2000). A mathematical model of caspase function in apoptosis. Nat. Biotechnol., 18, 768–74CrossRefGoogle ScholarPubMed
Gabay, C. (2003). IL-1 trap. Regeneron/Novartis. Curr. Opin. Investig. Drugs, 4, 593–7Google ScholarPubMed
Garrity, M. M., Burgart, L. J., Riehle, D. L., Hill, E. M., Sebo, T. J., and Witzig, T. (2003). Identifying and quantifying apoptosis: navigating technical pitfalls. Mod. Pathol., 16, 389–94CrossRefGoogle ScholarPubMed
Geiger, T., Husken, D., Weiler, J.et al. (2000). Consequences of the inhibition of Hdm2 expression in human osteosarcoma cells using antisense oligonucleotides. Anticancer Drug Des., 15, 423–30Google ScholarPubMed
Gil-Gomez, G. and Brady, H. J. (1998). Transgenic mice in apoptosis research. Apoptosis, 3, 215–28CrossRefGoogle ScholarPubMed
Glaser, M., Collingridge, D. R., Aboagye, E. O.et al. (2003a). Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl. Radiat. Isot., 58, 55–62CrossRefGoogle Scholar
Glaser, M., Luthra, S. K., and Brady, F. (2003b). Applications of positron-emitting halogens in PET oncology. Int. J. Oncol., 22, 253–67Google Scholar
Glover, C. J., Hite, K., DeLosh, R.et al. (2003). A high-throughput screen for identification of molecular mimics of Smac/DIABLO utilizing a fluorescence polarization assay. Anal. Biochem., 320, 157–69CrossRefGoogle ScholarPubMed
Goldstein, J. C., Kluck, R. M., and Green, D. R. (2000a). A single cell analysis of apoptosis. Ordering the apoptotic phenotype. Ann. NY Acad. Sci., 926, 132–41CrossRefGoogle Scholar
Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I., and Green, D. R. (2000b). The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol., 2, 156–62CrossRefGoogle Scholar
Grabarek, J., Ardelt, B., Kunicki, J., and Darzynkiewicz, Z. (2002). Detection of in situ activation of transglutaminase during apoptosis: correlation with the cell cycle phase by multiparameter flow and laser scanning cytometry. Cytometry, 49, 83–9CrossRefGoogle ScholarPubMed
Green, D. R. and Evan, G. I. (2002). A matter of life and death. Cancer Cell, 1, 19–30CrossRefGoogle ScholarPubMed
Grodzicky, T. and Elkon, K. B. (2002). Apoptosis: a case where too much or too little can lead to autoimmunity. Mt. Sinai. J. Med., 69, 208–19Google ScholarPubMed
Gromeier, M., Lachmann, S., Rosenfeld, M. R., Gutin, P. H., and Wimmer, E. (2000). Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA, 97, 6803–8CrossRefGoogle ScholarPubMed
Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes. Dev., 13, 1899–911CrossRefGoogle ScholarPubMed
Growney, J. D. and Dietrich, W. F. (2000). High-resolution genetic and physical map of the Lgn1 interval in C57BL/6J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome. Res., 10, 1158–71CrossRefGoogle ScholarPubMed
Gu, J., Kagawa, S., Takakura, M.et al. (2000). Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res., 60, 5359–64Google ScholarPubMed
Gujral, J. S., Farhood, A., and Jaeschke, H. (2003). Oncotic necrosis and caspase-dependent apoptosis during galactosamine-induced liver injury in rats. Toxicol. Appl. Pharmacol., 190, 37–46CrossRefGoogle ScholarPubMed
Gumucio, D. L., Diaz, A., Schaner, P.et al. (2002). Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clin. Exp. Rheumatol., 20, S45–53Google ScholarPubMed
Haefner, B. (2002). NF-kappaB: arresting a major culprit in cancer. Drug Discov. Today, 7, 653–63CrossRefGoogle Scholar
Hakumaki, J. M. and Brindle, K. M. (2003). Techniques: visualizing apoptosis using nuclear magnetic resonance. Trends Pharmacol. Sci., 24, 146–9CrossRefGoogle ScholarPubMed
Han, B. H., Xu, D., Choi, J.et al. (2002). Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury. J. Biol. Chem., 277, 30128–36CrossRefGoogle ScholarPubMed
Hanahan, D. and Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70CrossRefGoogle ScholarPubMed
Harlin, H., Reffey, S. B., Duckett, C. S., Lindsten, T., and Thompson, C. B. (2001). Characterization of XIAP-deficient mice. Mol. Cell Biol., 21, 3604–8CrossRefGoogle ScholarPubMed
Harton, J. A., Linhoff, M. W., Zhang, J., and Ting, J. P. (2002). Cutting edge: CATERPILLER – a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol., 169, 4088–93CrossRefGoogle ScholarPubMed
Hawkins, L. K., Lemoine, N. R., and Kirn, D. (2002). Oncolytic biotherapy: a novel therapeutic platform. Lancet. Oncol., 3, 17–26CrossRefGoogle Scholar
Hayward, R. L., Macpherson, J. S., Cummings, J., Monia, B. P., Smyth, J. F., and Jodrell, D. I. (2003). Antisense Bcl-xl down-regulation switches the response to topoisomerase I inhibition from senescence to apoptosis in colorectal cancer cells, enhancing global cytotoxicity. Clin. Cancer Res., 9, 2856–65Google ScholarPubMed
Hegde, R., Srinivasula, S. M., Datta, P.et al. (2003). The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein. J. Biol. Chem., 15, 15Google Scholar
Hengartner, M. O., Eelis, R. E., and Horvitz, H. R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature, 356, 494–9CrossRefGoogle ScholarPubMed
Hinz, M., Loser, P., Mathas, S., Krappmann, D., Dorken, B., and Scheidereit, C. (2001). Constitutive NF-kappaB maintains high expression of a characteristic gene network, including CD40, CD86, and a set of antiapoptotic genes in Hodgkin/Reed–Sternberg cells. Blood, 97, 2798–807CrossRefGoogle Scholar
Hirase, N., Yufu, Y., Abe, Y.et al. (2000). Primary macroglobulinemia with t(11;18)(q21;q21). Cancer Genet. Cytogenet., 117, 113–17CrossRefGoogle Scholar
Hoeberichts, F. A., and Woltering, E. J. (2003). Multiple mediators of plant programmed cell death: interplay of conserved cell death mechanisms and plant-specific regulators. Bioessays, 25, 47–57CrossRefGoogle ScholarPubMed
Hofmann, K., Bucher, P., and Tschopp, J. (1997). The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci., 22, 155–6CrossRefGoogle ScholarPubMed
Holcik, M., Thompson, C. S., Yaraghi, Z., Lefebvre, C. A., MacKenzie, A. E., and Korneluk, R. G. (2000). The hippocampal neurons of neuronal apoptosis inhibitory protein 1 (NAIP1)-deleted mice display increased vulnerability to kainic acid-induced injury. Proc. Natl. Acad. Sci. USA, 97, 2286–90CrossRefGoogle ScholarPubMed
Hornsby, P. J. and Didenko, V. V. (2002). In situ DNA ligation as a method for labeling apoptotic cells in tissue sections. An overview. Methods Mol. Biol., 203, 133–41Google ScholarPubMed
Hotchkiss, R. S., Chang, K. C., Swanson, P. E.et al. (2000). Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat. Immunol., 1, 496–501CrossRefGoogle ScholarPubMed
Hoves, S., Krause, S. W., Scholmerich, J., and Fleck, M. (2003). The JAM-assay: optimized conditions to determine death-receptor-mediated apoptosis. Methods, 31, 127–34CrossRefGoogle ScholarPubMed
Hu, Y., Cherton-Horvat, G., Dragowska, V.et al. (2003). Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin. Cancer Res., 9, 2826–36Google ScholarPubMed
Huang, P. and Oliff, A. (2001). Signaling pathways in apoptosis as potential targets for cancer therapy. Trends Cell Biol., 11, 343–8CrossRefGoogle ScholarPubMed
Huang, Z. (2002). The chemical biology of apoptosis. Exploring protein–protein interactions and the life and death of cells with small molecules. Chem. Biol., 9, 1059–72CrossRefGoogle ScholarPubMed
Huettenbrenner, S., Maier, S., Leisser, C.et al. (2003). The evolution of cell death programs as prerequisites of multicellularity. Mutat. Res., 543, 235–49CrossRefGoogle ScholarPubMed
Igney, F. H. and Krammer, P. H. (2002). Death and anti-death: tumour resistance to apoptosis. Nat. Rev. Cancer, 2, 277–88CrossRefGoogle ScholarPubMed
Imoto, I., Tsuda, H., Hirasawa, A.et al. (2002). Expression of cIAP1, a target for 11q22 amplification, correlates with resistance of cervical cancers to radiotherapy. Cancer Res., 62, 4860–6Google Scholar
Imoto, I., Yang, Z. Q., Pimkhaokham, A.et al. (2001). Identification of cIAP1 as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas. Cancer Res., 61, 6629–34Google ScholarPubMed
Inohara, N. and Nunez, G. (2003). NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol., 3, 371–82CrossRefGoogle ScholarPubMed
Isabel, E., Black, W. C., Bayly, C. I.et al. (2003). Nicotinyl aspartyl ketones as inhibitors of caspase-3. Bioorg. Med. Chem. Lett., 13, 2137–40CrossRefGoogle ScholarPubMed
Ishizaki, Y., Jacobson, M. D., and Raff, M. C. (1998). A role for caspases in lens fiber differentiation. J. Cell Biol., 140, 153–8CrossRefGoogle ScholarPubMed
Jakubczak, J. L., Ryan, P., Gorziglia, M.et al. (2003). An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res., 63, 1490–9Google ScholarPubMed
Jansen, B. and Zangemeister-Wittke, U. (2002). Antisense therapy for cancer – the time of truth. Lancet. Oncol., 3, 672–83CrossRefGoogle ScholarPubMed
Jansen, B., Wacheck, V., Heere-Ress, E.et al. (2000). Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet., 356, 1728–33CrossRefGoogle ScholarPubMed
Jiang, X., Kim, H. E., Shu, H.et al. (2003). Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science, 299, 223–6CrossRefGoogle Scholar
Johnson, L., Shen, A., Boyle, L.et al. (2002). Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell, 1, 325–37CrossRefGoogle ScholarPubMed
Johnstone, R. W., Ruefli, A. A., and Lowe, S. W. (2002). Apoptosis: a link between cancer genetics and chemotherapy. Cell, 108, 153–64CrossRefGoogle ScholarPubMed
Joyce, D. E., Gelbert, L., Ciaccia, A., DeHoff, B., and Grinnell, B. W. (2001). Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J. Biol. Chem., 276, 11199–203CrossRefGoogle ScholarPubMed
Joza, N., Kroemer, G., and Penninger, J. M. (2002). Genetic analysis of the mammalian cell death machinery. Trends Genet., 18, 142–9CrossRefGoogle ScholarPubMed
Joza, N., Susin, S. A., Daugas, E.et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 410, 549–54CrossRefGoogle ScholarPubMed
Karin, M., Cao, Y., Greten, F. R., and Li, Z. W. (2002). NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer, 2, 301–10CrossRefGoogle ScholarPubMed
Kennedy, N. J., Kataoka, T., Tschopp, J., and Budd, R. C. (1999). Caspase activation is required for T cell proliferation. J. Exp. Med., 190, 1891–6CrossRefGoogle ScholarPubMed
Kerr, J. F. (2002). History of the events leading to the formulation of the apoptosis concept. Toxicology, 181–2, 471–4CrossRefGoogle Scholar
Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer, 26, 239–57CrossRefGoogle ScholarPubMed
Kiechle, F. L., and Zhang, X. (2002). Apoptosis: biochemical aspects and clinical implications. Clin. Chim. Acta., 326, 27–45CrossRefGoogle ScholarPubMed
Kishore, N., Sommers, C., Mathialagan, S.et al. (2003). A selective IKK-2 inhibitor blocks NF-kappa B-dependent gene expression in interleukin-1 beta-stimulated synovial fibroblasts. J. Biol. Chem., 278, 32861–71CrossRefGoogle ScholarPubMed
Kohler, C., Orrenius, S., and Zhivotovsky, B. (2002). Evaluation of caspase activity in apoptotic cells. J. Immunol. Methods, 265, 97–110CrossRefGoogle ScholarPubMed
Komarov, P. G., Komarova, E. A., Kondratov, R. V.et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science, 285, 1733–7CrossRefGoogle ScholarPubMed
Koonin, E. V. and Aravind, L. (2000). The NACHT family – a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem. Sci., 25, 223–4CrossRefGoogle Scholar
Koonin, E. V. and Aravind, L. (2002). Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ., 9, 394–404CrossRefGoogle ScholarPubMed
Koulov, A. V., Stucker, K. A., Lakshmi, C., Robinson, J. P, and Smith, B. D. (2003). Detection of apoptotic cells using a synthetic fluorescent sensor for membrane surfaces that contain phosphatidylserine. Cell Death Differ., 10, 1357–9CrossRefGoogle ScholarPubMed
Kovalenko, A., Chable-Bessia, C., Cantarella, G., Israel, A., Wallach, D., and Courtois, G. (2003). The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature, 424, 801–5CrossRefGoogle ScholarPubMed
Kugler, S., Straten, G., Kreppel, F., Isenmann, S., Liston, P., and Bahr, M. (2000). The X-linked inhibitor of apoptosis (XIAP) prevents cell death in axotomized CNS neurons in vivo. Cell Death Differ., 7, 815–24CrossRefGoogle ScholarPubMed
Kylarova, D., Prochazkova, J., Mad'arova, J., Bartos, J., and Lichnovsky, V. (2002). Comparison of the TUNEL, lamin B and annexin V methods for the detection of apoptosis by flow cytometry. Acta. Histochem., 104, 367–70CrossRefGoogle ScholarPubMed
LaCasse, E. (in press). Apoptosis control based on down-regulating the inhibitor-of-apoptosis (IAP) proteins: XIAP antisense and other approaches. In Cell Engineering, volume 4, ed. M. Al-Rubeai and M. Fussenegger. Dordrecht: Kluwer
LaCasse, E. C., Baird, S., Korneluk, R. G., and MacKenzie, A. E. (1998). The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene, 17, 3247–59CrossRefGoogle Scholar
Lamkanfi, M., Declercq, W., Kalai, M., Saelens, X., and Vandenabeele, P. (2002). Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death Differ., 9, 358–61CrossRefGoogle Scholar
Lawen, A. (2003). Apoptosis – an introduction. Bioessays, 25, 888–96CrossRefGoogle ScholarPubMed
Lecoeur, H., Oliveira-Pinto, L. M., and Gougeon, M. L. (2002). Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-aminoactinomycin D assay. J. Immunol. Methods, 265, 81–96CrossRefGoogle ScholarPubMed
Li, F. (2003). Survivin study: what is the next wave?J. Cell Physiol., 197, 8–29CrossRefGoogle ScholarPubMed
Liang, M. C., Bardhan, S., Li, C., Pace, E. A., Porco, J. A. Jr., and Gilmore, T. D. (2003). Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor kappaB by inhibiting the inhibitor of kappaB kinase. Mol. Pharmacol., 64, 123–31CrossRefGoogle Scholar
Lieberman, J. (2003). The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat. Rev. Immunol., 3, 361–70CrossRefGoogle ScholarPubMed
Liming, P., Bradley, C. J., and Liu, J. J. (1999). The correlativity analysis of six methods of detecting apoptosis. Chin. Med. Sci. J., 14, 145–51Google ScholarPubMed
Linton, S. D., Karanewsky, D. S., Ternansky, R. J.et al. (2002). Acyl dipeptides as reversible caspase inhibitors. Part 1: initial lead optimization. Bioorg. Med. Chem. Lett., 12, 2969–71CrossRefGoogle ScholarPubMed
Liston, P., Fong, W. G., Kelly, N. L.et al. (2001). Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat. Cell Biol., 3, 128–33CrossRefGoogle ScholarPubMed
Liston, P., Roy, N., Tamai, K.et al. (1996). Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature, 379, 349–53CrossRefGoogle Scholar
Liu, H., Ye, H., Ruskone-Fourmestraux, A.et al. (2002). T(11;18) is a marker for all stage gastric MALT lymphomas that will not respond to H. pylori eradication. Gastroenterology, 122, 1286–94CrossRefGoogle Scholar
Liu, T., Rojas, A., Ye, Y., and Godzik, A. (2003). Homology modeling provides insights into the binding mode of the PAAD/DAPIN/pyrin domain, a fourth member of the CARD/DD/DED domain family. Protein Sci., 12, 1872–81CrossRefGoogle ScholarPubMed
Lockshin, R. A. and Zakeri, Z. (2001). Programmed cell death and apoptosis: origins of the theory. Nat. Rev. Mol. Cell Biol., 2, 545–50CrossRefGoogle Scholar
Lockshin, R. A. and Zakeri, Z. (2002). Caspase-independent cell deaths. Curr. Opin. Cell Biol., 14, 727–33CrossRefGoogle ScholarPubMed
Loo, D. T. (2002). TUNEL assay. An overview of techniques. Methods Mol. Biol., 203, 21–30Google ScholarPubMed
Los, M., Burek, C. J., Stroh, C., Benedyk, K., Hug, H., and Mackiewicz, A. (2003). Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov. Today, 8, 67–77CrossRefGoogle ScholarPubMed
Mahlamaki, E. H., Barlund, M., Tanner, M.et al. (2002). Frequent amplification of 8q24-, 11q-, 17q-, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer, 35, 353–8CrossRefGoogle ScholarPubMed
Makin, G. and Dive, C. (2003). Recent advances in understanding apoptosis: new therapeutic opportunities in cancer chemotherapy. Trends Mol. Med., 9, 251–5CrossRefGoogle ScholarPubMed
Makower, D., Rozenblit, A., Kaufman, H.et al. (2003). Phase II clinical trial of intralesional administration of the oncolytic adenovirus ONYX-015 in patients with hepatobiliary tumors with correlative p53 studies. Clin. Cancer Res., 9, 693–702Google ScholarPubMed
Malkin, D., Li, F. P., Strong, L. C.et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 250, 1233–8CrossRefGoogle Scholar
Marsden, V. S., and Strasser, A. (2003). Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol., 21, 71–105CrossRefGoogle ScholarPubMed
Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell, 10, 417–26CrossRefGoogle ScholarPubMed
Mathis, D., Vence, L., and Benoist, C. (2001). Beta-cell death during progression to diabetes. Nature, 414, 792–8CrossRefGoogle ScholarPubMed
McDermott, M. F. (2002). Genetic clues to understanding periodic fevers, and possible therapies. Trends Mol. Med., 8, 550–4CrossRefGoogle ScholarPubMed
McIntyre, K. W., Shuster, D. J., Gillooly, K. M.et al. (2003). A highly selective inhibitor of I kappa B kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum, 48, 2652–9CrossRefGoogle ScholarPubMed
McKinnon, S. J., Lehman, D. M., Tahzib, N. G.et al. (2002). Baculoviral IAP repeat-containing-4 protects optic nerve axons in a rat glaucoma model. Mol. Ther., 5, 780–7CrossRefGoogle Scholar
Meier, P., Finch, A., and Evan, G. (2000). Apoptosis in development. Nature, 407, 796–801CrossRefGoogle ScholarPubMed
Melino, G. (2002). The meaning of death. Cell Death Differ., 9, 347–8CrossRefGoogle Scholar
Micoud, F., Mandrand, B., and Malcus-Vocanson, C. (2001). Comparison of several techniques for the detection of apoptotic astrocytes in vitro. Cell Prolif., 34, 99–113CrossRefGoogle ScholarPubMed
Miller, L. K. (1999). An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol., 9, 323–8CrossRefGoogle ScholarPubMed
Mirkes, P. E. (2002). 2001 Warkany lecture: to die or not to die, the role of apoptosis in normal and abnormal mammalian development. Teratology, 65, 228–39CrossRefGoogle ScholarPubMed
Mori, Y., Selaru, F. M., Sato, F.et al. (2003). The impact of microsatellite instability on the molecular phenotype of colorectal tumors. Cancer Res., 63, 4577–82Google ScholarPubMed
Mulder, N. J., Apweiler, R., Attwood, T. K.et al. (2003). The InterPro Database, 2003, brings increased coverage and new features. Nucleic Acids Res., 31, 315–18CrossRefGoogle ScholarPubMed
Mullauer, L., Gruber, P., Sebinger, D., Buch, J., Wohlfart, S., and Chott, A. (2001). Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat. Res., 488, 211–31CrossRefGoogle ScholarPubMed
Murga-Penas, E., Hinz, K., Roser, K.et al. (2003). Translocations t(11;18)(q21;q21) and t(14;18)(q32;q21) are the main chromosomal abnormalities involving MLT/MALT1 in MALT lymphomas. Leukemia, 21, 21Google Scholar
Murphy, F. J., Hayes, I., and Cotter, T. G. (2003). Targeting inflammatory diseases via apoptotic mechanisms. Curr. Opin. Pharmacol., 3, 412–9CrossRefGoogle ScholarPubMed
Nakagawa, T., Zhu, H., Morishima, N.et al. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 403, 98–103CrossRefGoogle ScholarPubMed
Nathan, C. (2002). Points of control in inflammation. Nature, 420, 846–52CrossRefGoogle ScholarPubMed
Natori, S., Higuchi, H., Contreras, P., and Gores, G. J. (2003). The caspase inhibitor IDN-6556 prevents caspase activation and apoptosis in sinusoidal endothelial cells during liver preservation injury. Liver Transpl., 9, 278–84CrossRefGoogle ScholarPubMed
Newmeyer, D. D. and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell, 112, 481–90CrossRefGoogle Scholar
Newton, K. and Strasser, A. (2003). Caspases signal not only apoptosis but also antigen-induced activation in cells of the immune system. Genes Dev., 17, 819–25CrossRefGoogle Scholar
Nguyen, J. T. and Wells, J. A. (2003). Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc. Natl. Acad. Sci. USA, 100, 7533–8CrossRefGoogle ScholarPubMed
Nicholson, D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ., 6, 1028–42CrossRefGoogle ScholarPubMed
Nygren, P. and Larsson, R. (2003). Overview of the clinical efficacy of investigational anticancer drugs. J. Intern. Med., 253, 46–75CrossRefGoogle ScholarPubMed
Oberhammer, F., Wilson, J. W., Dive, C.et al. (1993). Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J., 12, 3679–84Google ScholarPubMed
Okamoto, Y., Anan, H., Nakai, E.et al. (1999). Peptide based interleukin-1 beta converting enzyme (ICE) inhibitors: synthesis, structure activity relationships and crystallographic study of the ICE-inhibitor complex. Chem. Pharm. Bull. (Tokyo), 47, 11–21CrossRefGoogle ScholarPubMed
Olie, R. A., Hall, J., Natt, F., Stahel, R. A, and Zangemeister-Wittke, U. (2002). Analysis of ribosyl-modified, mixed backbone analogs of a bcl-2/bcl-xL antisense oligonucleotide. Biochim. Biophys. Acta., 1576, 101–9CrossRefGoogle ScholarPubMed
Olijslagers, S., Dege, A. Y., Dinsart, C.et al. (2001). Potentiation of a recombinant oncolytic parvovirus by expression of apoptin. Cancer Gene. Ther., 8, 958–65CrossRefGoogle ScholarPubMed
Olson, N. E., Graves, J. D., Shu, G. L., Ryan, E. J., and Clark, E. A. (2003). Caspase activity is required for stimulated B lymphocytes to enter the cell cycle. J. Immunol., 170, 6065–72CrossRefGoogle ScholarPubMed
Orlowski, R. Z. and Baldwin, A. S. Jr. (2002). NF-kappaB as a therapeutic target in cancer. Trends Mol. Med., 8, 385–9CrossRefGoogle Scholar
Otsuki, Y., Li, Z., and Shibata, M. A. (2003). Apoptotic detection methods – from morphology to gene. Prog. Histochem. Cytochem., 38, 275–339CrossRefGoogle Scholar
Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., and Orrenius, S. (2002). Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. USA, 99, 1259–63CrossRefGoogle ScholarPubMed
Pawlowski, K., Pio, F., Chu, Z., Reed, J. C, and Godzik, A. (2001). PAAD – a new protein domain associated with apoptosis, cancer and autoimmune diseases. Trends Biochem. Sci., 26, 85–7CrossRefGoogle ScholarPubMed
Pecora, A. L., Rizvi, N., Cohen, G. I.et al. (2002). Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. J. Clin. Oncol., 20, 2251–66CrossRefGoogle ScholarPubMed
Peng, Y., Li, C., Chen, L., Sebti, S., and Chen, J. (2003). Rescue of mutant p53 transcription function by ellipticine. Oncogene, 22, 4478–87CrossRefGoogle ScholarPubMed
Perfettini, J. L., and Kroemer, G. (2003). Caspase activation is not death. Nat. Immunol., 4, 308–10CrossRefGoogle Scholar
Perkins, D. (2002). Targeting apoptosis in neurological disease using the herpes simplex virus. J. Cell Mol. Med., 6, 341–56CrossRefGoogle ScholarPubMed
Perrelet, D., Ferri, A., Liston, P., Muzzin, P., Korneluk, R. G., and Kato, A. C. (2002). IAPs are essential for GDNF-mediated neuroprotective effects in injured motor neurons in vivo. Nat. Cell Biol., 4, 175–9CrossRefGoogle ScholarPubMed
Perrelet, D., Ferri, A., MacKenzie, A. E.et al. (2000). IAP family proteins delay motoneuron cell death in vivo. Eur. J. Neurosci., 12, 2059–67CrossRefGoogle ScholarPubMed
Peter, M. E. and Krammer, P. H. (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ., 10, 26–35CrossRefGoogle ScholarPubMed
Petrin, D., Baker, A., Coupland, S. G.et al. (2003). Structural and functional protection of photoreceptors from MNU-induced retinal degeneration by the X-linked inhibitor of apoptosis. Invest. Ophthalmol. Vis. Sci., 44, 2757–63CrossRefGoogle ScholarPubMed
Philchenkov, A. A. (2003). Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc.), 68, 365–76CrossRefGoogle ScholarPubMed
Pirollo, K. F., Rait, A., Sleer, L. S., and Chang, E. H. (2003). Antisense therapeutics: from theory to clinical practice. Pharmacol. Ther., 99, 55–77CrossRefGoogle ScholarPubMed
Pozarowski, P., Huang, X., Halicka, D. H., Lee, B., Johnson, G., and Darzynkiewicz, Z. (2003). Interactions of fluorochrome-labeled caspase inhibitors with apoptotic cells: a caution in data interpretation. Cytometry, 55A, 50–60CrossRefGoogle Scholar
Print, C. G. and Lakoski-Loveland, K. (2000). Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays, 22, 423–303.0.CO;2-0>CrossRefGoogle ScholarPubMed
Proskuryakov, S. Y., Konoplyannikov, A. G., and Gabai, V. L. (2003). Necrosis: a specific form of programmed cell death?Exp. Cell Res., 283, 1–16CrossRefGoogle ScholarPubMed
Ramaswamy, S., Ross, K. N., Lander, E. S., and Golub, T. R. (2003). A molecular signature of metastasis in primary solid tumors. Nat. Genet., 33, 49–54CrossRefGoogle ScholarPubMed
Ramaswamy, S., Tamayo, P., Rifkin, R.et al. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA, 98, 15149–54CrossRefGoogle ScholarPubMed
Rampino, N., Yamamoto, H., Ionov, Y.et al. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science, 275, 967–9CrossRefGoogle ScholarPubMed
Ranger, A. M., Malynn, B. A., and Korsmeyer, S. J. (2001). Mouse models of cell death. Nat. Genet., 28, 113–18CrossRefGoogle ScholarPubMed
Rao, R. V., Castro-Obregon, S., Frankowski, H.et al. (2002). Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem., 277, 21836–42CrossRefGoogle ScholarPubMed
Rasmussen, H., Rasmussen, C., Lempicki, M.et al. (2002). TNFerade Biologic: preclinical toxicology of a novel adenovector with a radiation-inducible promoter, carrying the human tumor necrosis factor alpha gene. Cancer Gene. Ther., 9, 951–7CrossRefGoogle ScholarPubMed
Rathmell, J. C., and Thompson, C. B. (2002). Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell, 109, S97–107CrossRefGoogle ScholarPubMed
Read, S. H., Baliga, B. C., Ekert, P. G., Vaux, D. L., and Kumar, S. (2002). A novel Apaf-1-independent putative caspase-2 activation complex. J. Cell Biol., 159, 739–45CrossRefGoogle ScholarPubMed
Reed, J. C. (2002). Apoptosis-based therapies. Nat. Rev. Drug Discov., 1, 111–21CrossRefGoogle ScholarPubMed
Reed, J. C. (2003). Apoptosis-targeted therapies for cancer. Cancer Cell, 3, 17–22CrossRefGoogle ScholarPubMed
Reed, J. C., Doctor, K., Rojas, A.et al. (2003). Comparative analysis of apoptosis and inflammation genes of mice and humans. Genome Res., 13, 1376–88CrossRefGoogle ScholarPubMed
Rich, T., Watson, C. J., and Wyllie, A. (1999). Apoptosis: the germs of death. Nat. Cell Biol., 1, E69–71CrossRefGoogle Scholar
Rieux-Laucat, F., Deist, F., and Fischer, A. (2003). Autoimmune lymphoproliferative syndromes: genetic defects of apoptosis pathways. Cell Death Differ., 10, 124–33CrossRefGoogle ScholarPubMed
Robert, A., Miron, M. J., Champagne, C., Gingras, M. C., Branton, P. E., and Lavoie, J. N. (2002). Distinct cell death pathways triggered by the adenovirus early region 4 ORF 4 protein. J. Cell Biol., 158, 519–28CrossRefGoogle ScholarPubMed
Robertson, G. S., Crocker, S. J., Nicholson, D. W., and Schulz, J. B. (2000). Neuroprotection by the inhibition of apoptosis. Brain Pathol., 10, 283–92CrossRefGoogle ScholarPubMed
Robertson, J. D., Fadeel, B., Zhivotovsky, B., and Orrenius, S. (2002). ‘Centennial’ Nobel Conference on apoptosis and human disease. Cell Death Differ., 9, 468–75CrossRefGoogle ScholarPubMed
Roshak, A. K., Callahan, J. F., and Blake, S. M. (2002). Small-molecule inhibitors of NF-kappaB for the treatment of inflammatory joint disease. Curr. Opin. Pharmacol., 2, 316–21CrossRefGoogle ScholarPubMed
Roux, P. P., Dorval, G., Boudreau, M.et al. (2002). K252a and CEP1347 are neuroprotective compounds that inhibit mixed-lineage kinase-3 and induce activation of Akt and ERK. J. Biol. Chem., 277, 49473–80CrossRefGoogle ScholarPubMed
Roy, N., Mahadevan, M. S., McLean, M.et al. (1995). The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell, 80, 167–78CrossRefGoogle ScholarPubMed
Sakahira, H., Enari, M., Ohsawa, Y., Uchiyama, Y., and Nagata, S. (1999). Apoptotic nuclear morphological change without DNA fragmentation. Curr. Biol., 9, 543–6CrossRefGoogle ScholarPubMed
Salomon, A. R., Voehringer, D. W., Herzenberg, L. A., and Khosla, C. (2000). Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPase. Proc. Natl. Acad. Sci. USA, 97, 14766–71CrossRefGoogle Scholar
Salvesen, G. S., and Duckett, C. S. (2002). IAP proteins: blocking the road to death's door. Nat. Rev. Mol. Cell Biol., 3, 401–10CrossRefGoogle ScholarPubMed
Sanchez-Izquierdo, D., Buchonnet, G., Siebert, R.et al. (2003). MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood, 101, 4539–46CrossRefGoogle ScholarPubMed
Sapolsky, R. M. (2003). Neuroprotective gene therapy against acute neurological insults. Nat. Rev. Neurosci., 4, 61–9CrossRefGoogle ScholarPubMed
Saraste, A. (1999). Morphologic criteria and detection of apoptosis. Herz, 24, 189–95CrossRefGoogle Scholar
Sasaki, H., Sheng, Y., Kotsuji, F., and Tsang, B. K. (2000). Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res., 60, 5659–66Google ScholarPubMed
Scapin, G., Patel, S. B., Lisnock, J., Becker, J. W., and LoGrasso, P. V. (2003). The structure of JNK3 in complex with small molecule inhibitors: structural basis for potency and selectivity. Chem. Biol., 10, 705–12CrossRefGoogle ScholarPubMed
Schultz, D. R. and Harrington, W. J. Jr. (2003). Apoptosis: programmed cell death at a molecular level. Semin. Arthritis Rheum., 32, 345–69CrossRefGoogle Scholar
Scorrano, L. and Korsmeyer, S. J. (2003). Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem. Biophys. Res. Commun., 304, 437–44CrossRefGoogle ScholarPubMed
Scott, C. W., Sobotka-Briner, C., Wilkins, D. E.et al. (2003). Novel small molecule inhibitors of caspase-3 block cellular and biochemical features of apoptosis. J. Pharmacol. Exp. Ther., 304, 433–40CrossRefGoogle Scholar
Semra, Y. K., Seidi, O. A., and Sharief, M. K. (2002). Disease activity in multiple sclerosis correlates with T lymphocyte expression of the inhibitor of apoptosis proteins. J. Neuroimmunol., 122, 159–66CrossRefGoogle Scholar
Shabbits, J. A., Hu, Y., and Mayer, L. D. (2003). Tumor chemosensitization strategies based on apoptosis manipulations. Mol. Cancer Ther., 2, 805–13Google ScholarPubMed
Shangary, S. and Johnson, D. E. (2003). Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family. Leukemia, 17, 1470–81CrossRefGoogle ScholarPubMed
Sharief, M. K. and Semra, Y. K. (2001a). Heightened expression of survivin in activated T lymphocytes from patients with multiple sclerosis. J. Neuroimmunol., 119, 358–64CrossRefGoogle Scholar
Sharief, M. K. and Semra, Y. K. (2001b). Upregulation of the inhibitor of apoptosis proteins in activated T lymphocytes from patients with multiple sclerosis. J. Neuroimmunol., 119, 350–7CrossRefGoogle Scholar
Sharief, M. K. and Semra, Y. K. (2002). Down-regulation of survivin expression in T lymphocytes after interferon beta-1a treatment in patients with multiple sclerosis. Arch. Neurol., 59, 1115–21CrossRefGoogle Scholar
Sharief, M. K., Noori, M. A., Douglas, M. R., and Semra, Y. K. (2002a). Upregulated survivin expression in activated T lymphocytes correlates with disease activity in multiple sclerosis. Eur. J. Neurol., 9, 503–10CrossRefGoogle Scholar
Sharief, M. K., Noori, M. A., and Zoukos, Y. (2002b). Reduced expression of the inhibitor of apoptosis proteins in T cells from patients with multiple sclerosis following interferon-beta therapy. J. Neuroimmunol., 129, 224–31CrossRefGoogle Scholar
Shi, Y. (2001). A structural view of mitochondria-mediated apoptosis. Nat. Struct. Biol., 8, 394–401CrossRefGoogle ScholarPubMed
Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell, 9, 459–70CrossRefGoogle ScholarPubMed
Silke, J. and Vaux, D. L. (2001). Two kinds of BIR-containing protein – inhibitors of apoptosis, or required for mitosis. J. Cell Sci., 114, 1821–7Google ScholarPubMed
Sloviter, R. S. (2002). Apoptosis: a guide for the perplexed. Trends Pharmacol. Sci., 23, 19–24CrossRefGoogle ScholarPubMed
Smahi, A., Courtois, G., Rabia, S. H.et al. (2002). The NF-kappaB signalling pathway in human diseases: from incontinentia pigmenti to ectodermal dysplasias and immune-deficiency syndromes. Hum. Mol. Genet., 11, 2371–5CrossRefGoogle ScholarPubMed
Sperandio, S., Belle, I., and Bredesen, D. E. (2000). An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. USA, 97, 14376–81CrossRefGoogle ScholarPubMed
Srivastava, S., Zou, Z. Q., Pirollo, K., Blattner, W., and Chang, E. H. (1990). Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li–Fraumeni syndrome. Nature, 348, 747–9CrossRefGoogle Scholar
Stadelmann, C. and Lassmann, H. (2000). Detection of apoptosis in tissue sections. Cell Tissue Res., 301, 19–31CrossRefGoogle ScholarPubMed
Staub, E., Dahl, E., and Rosenthal, A. (2001). The DAPIN family: a novel domain links apoptotic and interferon response proteins. Trends Biochem. Sci., 26, 83–5CrossRefGoogle ScholarPubMed
Steed, P. M., Tansey, M. G., Zalevsky, J.et al. (2003). Inactivation of TNF signaling by rationally designed dominant-negative TNF variants. Science, 301, 1895–8CrossRefGoogle ScholarPubMed
Stennicke, H. R., Ryan, C. A., and Salvesen, G. S. (2002). Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem. Sci., 27, 94–101CrossRefGoogle ScholarPubMed
Stojdl, D. F., Lichty, B., Knowles, S.et al. (2000). Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med., 6, 821–5Google ScholarPubMed
Straten, G., Schmeer, C., Kretz, A.et al. (2002). Potential synergistic protection of retinal ganglion cells from axotomy-induced apoptosis by adenoviral administration of glial cell line-derived neurotrophic factor and X-chromosome-linked inhibitor of apoptosis. Neurobiol. Dis., 11, 123–33CrossRefGoogle ScholarPubMed
Streubel, B., Lamprecht, A., Dierlamm, J.et al. (2003). T(14;18)(q32;q21) involving IGH and MALT1 is a frequent chromosomal aberration in MALT lymphoma. Blood, 101, 2335–9CrossRefGoogle Scholar
Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell, 8, 613–21CrossRefGoogle ScholarPubMed
Swinney, D. C., Xu, Y. Z., Scarafia, L. E.et al. (2002). A small molecule ubiquitination inhibitor blocks NF-kappa B-dependent cytokine expression in cells and rats. J. Biol. Chem., 277, 23573–81CrossRefGoogle ScholarPubMed
Tamm, I., Kornblau, S. M., Segall, H.et al. (2000). Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res., 6, 1796–803Google ScholarPubMed
Tamm, I., Schriever, F., and Dorken, B. (2001). Apoptosis: implications of basic research for clinical oncology. Lancet. Oncol., 2, 33–42CrossRefGoogle ScholarPubMed
Tan, Y. J., Teng, E., and Ting, A. E. (2003). A small inhibitor of the interaction between Bax and Bcl-X(L) can synergize with methylprednisolone to induce apoptosis in Bcl-X(L)-overexpressing breast-cancer cells. J. Cancer Res. Clin. Oncol., 129, 437–48CrossRefGoogle ScholarPubMed
Tawa, P., Tam, J., Cassady, R., Nicholson, D. W, and Xanthoudakis, S. (2001). Quantitative analysis of fluorescent caspase substrate cleavage in intact cells and identification of novel inhibitors of apoptosis. Cell Death Differ., 8, 30–7CrossRefGoogle ScholarPubMed
Thome, M. and Tschopp, J. (2001). Regulation of lymphocyte proliferation and death by FLIP. Nat. Rev. Immunol., 1, 50–8CrossRefGoogle ScholarPubMed
Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456–62CrossRefGoogle Scholar
Thompson, T. G., DiDonato, C. J., Simard, L. R.et al. (1995). A novel cDNA detects homozygous microdeletions in greater than 50% of type I spinal muscular atrophy patients. Nat. Genet., 9, 56–62CrossRefGoogle ScholarPubMed
Thornberry, N. A. and Lazebnik, Y. (1998). Caspases: enemies within. Science, 281, 1312–16CrossRefGoogle Scholar
Tibbetts, M. D., Zheng, L., and Lenardo, M. J. (2003). The death effector domain protein family: regulators of cellular homeostasis. Nat. Immunol., 4, 404–9CrossRefGoogle ScholarPubMed
Tracey, L., Villuendas, R., Dotor, A. M.et al. (2003). Mycosis fungoides shows concurrent deregulation of multiple genes involved in the TNF signaling pathway: an expression profile study. Blood, 102, 1042–50CrossRefGoogle ScholarPubMed
Trapp, T., Korhonen, L., Besselmann, M., Martinez, R., Mercer, E. A., and Lindholm, D. (2003). Transgenic mice overexpressing XIAP in neurons show better outcome after transient cerebral ischemia. Mol. Cell Neurosci., 23, 302–13CrossRefGoogle ScholarPubMed
Trompouki, E., Hatzivassiliou, E., Tsichritzis, T., Farmer, H., Ashworth, A., and Mosialos, G. (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature, 424, 793–6CrossRefGoogle ScholarPubMed
Troy, C. M., Rabacchi, S. A., Hohl, J. B., Angelastro, J. M., Greene, L. A., and Shelanski, M. L. (2001). Death in the balance: alternative participation of the caspase-2 and -9 pathways in neuronal death induced by nerve growth factor deprivation. J. Neurosci., 21, 5007–16CrossRefGoogle ScholarPubMed
Tschopp, J., Martinon, F., and Burns, K. (2003). NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol., 4, 95–104CrossRefGoogle ScholarPubMed
Tsujimoto, Y. (2003). Cell death regulation by the Bcl-2 protein family in the mitochondria. J. Cell Physiol., 195, 158–67CrossRefGoogle ScholarPubMed
Tsujimoto, Y. and Croce, C. M. (1986). Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl. Acad. Sci. USA, 83, 5214–18CrossRefGoogle ScholarPubMed
Tzung, S. P., Kim, K. M., Basanez, G.et al. (2001). Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat. Cell Biol., 3, 183–91CrossRefGoogle ScholarPubMed
Bokhoven, H. and McKeon, F. (2002). Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. Trends Mol. Med., 8, 133–9CrossRefGoogle ScholarPubMed
Eb, M. M., Pietersen, A. M., Speetjens, F. M.et al. (2002). Gene therapy with apoptin induces regression of xenografted human hepatomas. Cancer Gene. Ther., 9, 53–61Google ScholarPubMed
Vanderluit, J. L., McPhail, L. T., Fernandes, K. J., Kobayashi, N. R., and Tetzlaff, W. (2003). In vivo application of mitochondrial pore inhibitors blocks the induction of apoptosis in axotomized neonatal facial motoneurons. Cell Death Differ., 10, 969–76CrossRefGoogle ScholarPubMed
Wiele, C., Lahorte, C., Vermeersch, H.et al. (2003). Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J. Clin. Oncol., 21, 3483–7CrossRefGoogle ScholarPubMed
Vaux, D. L. (2002). Apoptosis timeline. Cell Death Differ., 9, 349–54CrossRefGoogle ScholarPubMed
Vaux, D. L., Cory, S., and Adams, J. M. (1988). Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature, 335, 440–2CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W.et al. (2001). The sequence of the human genome. Science, 291, 1304–51CrossRefGoogle ScholarPubMed
Verhagen, A. M., Coulson, E. J., and Vaux, D. L. (2001). Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome. Biol., 2, REVIEWS3009. 1–10CrossRefGoogle ScholarPubMed
Verhagen, A. M., Ekert, P. G., Pakusch, M.et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102, 43–53CrossRefGoogle ScholarPubMed
Vezina, J., Grossmuller, F., and Muller, K. (2001). Influence of a transiently transfected gene on apoptosis, measurements guided by cotransfected GFP. J. Immunol. Methods, 252, 163–9CrossRefGoogle ScholarPubMed
Vila, M. and Przedborski, S. (2003). Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci., 4, 365–75CrossRefGoogle ScholarPubMed
Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ., 10, 45–65CrossRefGoogle ScholarPubMed
Waldmeier, P. C. (2003). Prospects for antiapoptotic drug therapy of neurodegenerative diseases. Prog. Neuropsychopharmacol. Biol. Psychiatry., 27, 303–21CrossRefGoogle ScholarPubMed
Waldmeier, P. C., Feldtrauer, J. J., Qian, T., and Lemasters, J. J. (2002). Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol. Pharmacol., 62, 22–9CrossRefGoogle ScholarPubMed
Walker, P. R., Carson, C., Leblanc, J., and Sikorska, M. (2002). Labeling DNA damage with terminal transferase. Applicability, specificity, and limitations. Methods Mol. Biol., 203, 3–19Google ScholarPubMed
Wang, J. L., Liu, D., Zhang, Z. J.et al. (2000). Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc. Natl. Acad. Sci. USA, 97, 7124–9CrossRefGoogle ScholarPubMed
Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev., 15, 2922–33Google ScholarPubMed
Waterhouse, N. J. and Trapani, J. A. (2003). A new quantitative assay for cytochrome c release in apoptotic cells. Cell Death Differ., 10, 853–5CrossRefGoogle ScholarPubMed
Watts, J. A. and Kline, J. A. (2003). Bench to bedside: the role of mitochondrial medicine in the pathogenesis and treatment of cellular injury. Acad. Emerg. Med., 10, 985–97CrossRefGoogle ScholarPubMed
Weil, M., Jacobson, M. D., and Raff, M. C. (1998). Are caspases involved in the death of cells with a transcriptionally inactive nucleus? Sperm and chicken erythrocytes. J. Cell Sci., 111, 2707–15Google ScholarPubMed
Wencker, D., Chandra, M., Nguyen, K.et al. (2003). A mechanistic role for cardiac myocyte apoptosis in heart failure. J. Clin. Invest., 111, 1497–504CrossRefGoogle ScholarPubMed
Willis, T. G., Jadayel, D. M., Du, M. Q.et al. (1999). Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell, 96, 35–45CrossRefGoogle Scholar
Wright, E. K., Goodart, S. A., Growney, J. D.et al. (2003). Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol., 13, 27–36CrossRefGoogle ScholarPubMed
Wu, T. Y., Wagner, K. W., Bursulaya, B., Schultz, P. G., and Deveraux, Q. L. (2003). Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem. Biol., 10, 759–67CrossRefGoogle ScholarPubMed
Xu, D. G., Crocker, S. J., Doucet, J. P.et al. (1997). Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat. Med., 3, 997–1004CrossRefGoogle ScholarPubMed
Xu, M., Okada, T., Sakai, H.et al. (2002). Functional human NAIP promoter transcription regulatory elements for the NAIP and PsiNAIP genes. Biochim. Biophys. Acta., 1574, 35–50CrossRefGoogle ScholarPubMed
Yang, W., Guastella, J., Huang, J. C.et al. (2003). MX1013, a dipeptide caspase inhibitor with potent in vivo antiapoptotic activity. Br. J. Pharmacol., 140, 402–12CrossRefGoogle ScholarPubMed
Yaraghi, Z., Korneluk, R. G., and MacKenzie, A. (1998). Cloning and characterization of the multiple murine homologues of NAIP (neuronal apoptosis inhibitory protein). Genomics, 51, 107–13CrossRefGoogle Scholar
Yasuhara, S., Zhu, Y., Matsui, T.et al. (2003). Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J. Histochem. Cytochem., 51, 873–85CrossRefGoogle Scholar
Yuan, J. and Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802–9CrossRefGoogle Scholar
Zakeri, Z. and Lockshin, R. A. (2002). Cell death during development. J. Immunol. Methods, 265, 3–20CrossRefGoogle ScholarPubMed
Zeiss, C. J. (2003). The apoptosis–necrosis continuum: insights from genetically altered mice. Vet. Pathol., 40, 481–95CrossRefGoogle ScholarPubMed
Zeuner, A., Eramo, A., Peschle, C., and Maria, R. (1999). Caspase activation without death. Cell Death Differ., 6, 1075–80CrossRefGoogle ScholarPubMed
Zhang, J. Y. (2002). Apoptosis-based anticancer drugs. Nat. Rev. Drug Discov., 1, 101–2CrossRefGoogle ScholarPubMed
Zhang, Q., Siebert, R., Yan, M.et al. (1999). Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat. Genet., 22, 63–8CrossRefGoogle Scholar
Zhao, M., Beauregard, D. A., Loizou, L., Davletov, B., and Brindle, K. M. (2001). Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med., 7, 1241–4CrossRefGoogle Scholar
Zheng, T. S., Hunot, S., Kuida, K.et al. (2000). Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat. Med., 6, 1241–7CrossRefGoogle ScholarPubMed
Zhivotovsky, B. and Orrenius, S. (2003). Defects in the apoptotic machinery of cancer cells: role in drug resistance. Semin. Cancer Biol., 13, 125–34CrossRefGoogle ScholarPubMed
Zhu, S., Stavrovskaya, I. G., Drozda, M.et al. (2002). Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 417, 74–8CrossRefGoogle ScholarPubMed
Zornig, M., Hueber, A., Baum, W., and Evan, G. (2001). Apoptosis regulators and their role in tumorigenesis. Biochim. Biophys. Acta., 1551, F1–37Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Apoptosis in health, disease, and therapy: overview and methodology
    • By Eric C. LaCasse, Ægera Oncology Inc., Martin Holcik, Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, Robert G. Korneluk, Departments of Pediatrics, and Biochemistry, Microbiology, and Immunology, University of Ottawa Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, Alex E. MacKenzie, Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute
  • Edited by Martin Holcik, University of Ottawa, Eric C. LaCasse, University of Ottawa, Alex E. MacKenzie, University of Ottawa, Robert G. Korneluk, University of Ottawa
  • Book: Apoptosis in Health and Disease
  • Online publication: 03 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511663543.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Apoptosis in health, disease, and therapy: overview and methodology
    • By Eric C. LaCasse, Ægera Oncology Inc., Martin Holcik, Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, Robert G. Korneluk, Departments of Pediatrics, and Biochemistry, Microbiology, and Immunology, University of Ottawa Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, Alex E. MacKenzie, Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute
  • Edited by Martin Holcik, University of Ottawa, Eric C. LaCasse, University of Ottawa, Alex E. MacKenzie, University of Ottawa, Robert G. Korneluk, University of Ottawa
  • Book: Apoptosis in Health and Disease
  • Online publication: 03 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511663543.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Apoptosis in health, disease, and therapy: overview and methodology
    • By Eric C. LaCasse, Ægera Oncology Inc., Martin Holcik, Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, Robert G. Korneluk, Departments of Pediatrics, and Biochemistry, Microbiology, and Immunology, University of Ottawa Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute, Alex E. MacKenzie, Department of Pediatrics, University of Ottawa, Apoptosis Research Centre and the Solange Gauthier Karsh Molecular Genetics Laboratory, Children's Hospital of Eastern Ontario Research Institute
  • Edited by Martin Holcik, University of Ottawa, Eric C. LaCasse, University of Ottawa, Alex E. MacKenzie, University of Ottawa, Robert G. Korneluk, University of Ottawa
  • Book: Apoptosis in Health and Disease
  • Online publication: 03 March 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511663543.002
Available formats
×