Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-02T01:29:06.501Z Has data issue: false hasContentIssue false

2 - Developmental apoptosis in health and disease

Published online by Cambridge University Press:  03 March 2010

Hyung Don Ryoo
Affiliation:
Howard Hughes Medical Institute, The Rockefeller University, New York, USA
Hermann Steller
Affiliation:
Howard Hughes Medical Institute, The Rockefeller University, New York, USA
Martin Holcik
Affiliation:
University of Ottawa
Eric C. LaCasse
Affiliation:
University of Ottawa
Alex E. MacKenzie
Affiliation:
University of Ottawa
Robert G. Korneluk
Affiliation:
University of Ottawa
Get access

Summary

Introduction

Animal development starts from a single fertilized cell which subsequently multiplies and grows into an elaborate adult body. Amid such massive growth, negative regulation of growth plays an important role in orchestrating the development of intricate body structures. Programmed cell death is an integral part of such negative regulation, important in sculpting body parts, eliminating unnecessary cells, controlling organ size and cell number, proper wiring of the nervous system, and development of the immune system.

Historically, developmental biology has played a pivotal role in forming the basic concepts of programmed cell death. Soon after cells were discovered more than a century and half ago, Vogt observed that cell death occurs in a predictable pattern during amphibian metamorphosis, such as the disappearance of tadpole tails through cell death (Vogt, 1842). In 1951, Glücksmann had proposed a radical hypothesis that cell death might be an active part of development (Glücksmann, 1951). He suggested three distinct functions of apoptosis: (1) deleting unneeded structures (phylogenetic cell death); (2) controlling cell number (histogenetic cell death); and (3) sculpting structures (morphogenetic cell death). Later, the term “programmed cell death” was coined to describe a predicted pattern of cell death associated with insect metamorphosis (Lockshin and Williams, 1964). The evidence that new protein synthesis is required to trigger programmed cell death came in an experiment during which it was shown that treatment with cycloheximide, a protein synthesis inhibitor, blocked tadpole tail cell death during frog metamorphosis (Tata, 1966).

Type
Chapter
Information
Apoptosis in Health and Disease
Clinical and Therapeutic Aspects
, pp. 49 - 74
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M. K. and Lengyel, J. A. (1991). Embryonic head involution and rotation of male terminalia require the Drosophila locus head involution defective. Genetics, 129, 783–9Google ScholarPubMed
Abrams, J. M., White, K., Fessler, L. I., and Steller, H. (1993). Programmed cell death during Drosophila embryogenesis. Development, 117, 29–43Google ScholarPubMed
Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X., and Akey, C. W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding and activation. Mol. Cell, 9, 423–32CrossRefGoogle ScholarPubMed
Aravind, L., Dixit, V. M., and Koonin, E. V. (2001). Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science, 291, 1279–84CrossRefGoogle ScholarPubMed
Ashkenazi, A. and Dixit, V. M. (1999). Apoptosis control by death and decoy receptors. Curr. Opin. Cell Biol., 11, 255–60CrossRefGoogle ScholarPubMed
Baehrecke, E. H. (2000). Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ., 7, 1057–62CrossRefGoogle ScholarPubMed
Bergmann, A., Agapite, J., McCall, K., and Steller, H. (1998). The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell, 95, 331–41CrossRefGoogle ScholarPubMed
Bergmann, A., McCall, K., and Steller, H. (2002). Regulation of cell number by MAPK-dependent control of apoptosis: a mechanism for trophic survival signaling. Dev. Cell, 2, 159–70CrossRefGoogle ScholarPubMed
Bouillet, P., Purton, J. F., Godfrey, D. I.et al. (2002). BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature, 415, 922–6CrossRefGoogle ScholarPubMed
Brachmann, C. B., Jassim, O. W., Wachsmuth, B. D., and Cagan, R. L. (2000). The Drosophila bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation. Curr. Biol., 10, 547–50CrossRefGoogle ScholarPubMed
Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A., and Gruss, P. (1998). Apaf1 (ced-4 homolog) regulates programmed cell death in mammalian development. Cell, 94, 727–37CrossRefGoogle ScholarPubMed
Chen, P., Nordstrom, W., Gish, B., and Abrams, J. M. (1996). Grim, a novel cell death gene in Drosophila. Genes Dev., 10, 1773–82CrossRef
Colussi, P. A., Quinn, L. M., Huang, D. C.et al. (2000). Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J. Cell Biol., 148, 625–7CrossRefGoogle ScholarPubMed
Conradt, B. (2002). With a little help from your friends: cells don't die alone. Nat. Cell. Biol., 4, E139–43CrossRefGoogle ScholarPubMed
Coucouvanis, E. and Martin, G. R. (1995). Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell, 83, 279–87CrossRefGoogle ScholarPubMed
Coucouvanis, E. and Martin, G. R. (1999). BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development, 126, 535–46Google Scholar
Counis, M. F., Chaudun, E., Arruti, C.et al. (1998). Analysis of nuclear degradation during lens cell differentiation. Cell Death Differ., 5, 251–61CrossRefGoogle ScholarPubMed
Maria, R., Zeuner, A., Eramo, A.et al. (1999). Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature, 401, 489–93CrossRefGoogle ScholarPubMed
Derry, W. B., Putzke, A. P., and Rothman, J. H. (2001). Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science, 294, 591–5CrossRefGoogle ScholarPubMed
Dunker, N., Schmitt, K., and Krieglstein, K. (2002). TGF-beta is required for programmed cell death in interdigital webs of the developing mouse limb. Mech. Dev., 113, 111–20CrossRefGoogle ScholarPubMed
Ellis, H. M. and Horvitz, H. R. (1986). Genetic control of programmed cell death in the nematode C. elegans. Cell, 44, 817–29CrossRefGoogle ScholarPubMed
Fadok, V. A., Bratton, D. L., Rose, D. M., Pearson, A., Ezekewitz, R. A. B., and Henson, P. M. (2000). A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature, 405, 85–90CrossRefGoogle ScholarPubMed
Fernando, P., Kelly, J. F., Balazsi, K., Slack, R. S., and Megeney, L. A. (2002). Caspase-3 activity is required for skeletal muscle differentiation. Proc. Natl. Acad. Sci. USA, 99, 11025–30CrossRefGoogle ScholarPubMed
Franc, N. C., Heitzler, P., Ezekowitz, R. A., and White, K. (1999). Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. Science, 284, 1991–4CrossRefGoogle ScholarPubMed
Garcia-Bellido, A., Ripoll, P., and Morata, G. (1973). Developmental compartmentalisation of the wing disk of Drosophila. Nat. New Biol., 245, 251–3CrossRefGoogle ScholarPubMed
Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J., and Hengartner, M. O. (2000). A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell, 5, 435–43CrossRefGoogle ScholarPubMed
Gaumer, S., Guenal, I., Brun, S., Theodore, L., and Mignotte, B. (2000). Bcl-2 and bax mammalian regulators of apoptosis are functional in Drosophila. Cell Death Differ., 7, 804–14CrossRefGoogle ScholarPubMed
Glücksmann, A. (1951). Cell deaths in normal vertebrate ontogeny. Biol. Rev., 26, 5986CrossRefGoogle ScholarPubMed
Goyal, L. (2001). Cell death inhibition: keeping caspases in check. Cell, 104, 805–8CrossRefGoogle ScholarPubMed
Goyal, L., McCall, K., Agapite, J., Hartwieg, E., and Steller, H. (2000). Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J., 19, 589–97CrossRefGoogle ScholarPubMed
Grether, M. E., Abrams, J. M., Agapite, J., White, K., and Steller, H. (1995). The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev., 9, 1694–708CrossRefGoogle ScholarPubMed
Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R., and Hengartner, M. O. (1999). Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development, 126, 1011–22Google ScholarPubMed
Hamon, Y., Broccardo, C., Chambenoit, O.et al. (2000). ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nat. Cell Biol., 2, 399–406CrossRefGoogle ScholarPubMed
Hay, B. A., Wassarman, D. A., and Rubin, G. M. (1995). Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death. Cell, 83, 1253–62CrossRefGoogle ScholarPubMed
Hedgecock, E. M., Sulston, J. E., and Thomson, J. N. (1983). Mutations affecting programmed cell death in the nematode Caenorhabditis elegans. Science, 220, 1277–9CrossRefGoogle Scholar
Hengartner, M. O. (2001). Apoptosis: corralling the corpses. Cell, 104, 325–8CrossRefGoogle ScholarPubMed
Hengartner, M. O., Ellis, R. E., and Horvitz, H. R. (1992). Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature, 356, 494–9CrossRefGoogle ScholarPubMed
Hoeppner, D. J., Hengartner, M. O., and Schnabel, R. (2001). Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature, 412, 202–6CrossRefGoogle ScholarPubMed
Horvitz, H. R., Ellis, H., and Sternberg, P. (1982). Programmed cell death in nematode development. Neurosci. Comment, 1, 56–65Google Scholar
Horvitz, H. R., Shaham, S., and Hengartner, M. O. (1994). The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harb. Quant. Biol., 59, 377–85CrossRefGoogle ScholarPubMed
Igaki, T., Kanuka, H., Inohara, N.et al. (2000). Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc. Natl. Acad. Sci. USA, 97, 662–7CrossRefGoogle ScholarPubMed
Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N., and Gallant, P. (1999). Drosophila myc regulates cellular growth during development. Cell, 98, 779–90CrossRefGoogle ScholarPubMed
Joza, N., Susin, S. A., Daugas, E.et al. (2001). Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature, 410, 549–54CrossRefGoogle ScholarPubMed
Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br. J. Cancer, 26, 239–57CrossRefGoogle Scholar
Kumar, S. and Doumanis, J. (2000). The fly caspases. Cell Death Differ., 7, 1039–44CrossRefGoogle ScholarPubMed
Larisch, S., Yi, Y., Lotan, R.et al. (2000). A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat. Cell. Biol., 2, 915–21CrossRefGoogle ScholarPubMed
Leulier, F., Vidal, S., Saigo, K., Ueda, R., and Lemaitre, B. (2002). Inducible expression of double-stranded RNA reveals a role for dFADD in the regulation of the antibacterial response in Drosophila adults. Curr. Biol., 12, 996–1000CrossRefGoogle ScholarPubMed
Levi-Montalcini, R. (1987). The nerve growth factor 35 years later. Science, 237, 1154–62CrossRefGoogle ScholarPubMed
Li, L. Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature, 412, 95–9CrossRefGoogle ScholarPubMed
Lindsten, T., Ross, A. J., King, A.et al. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell, 6, 1389–99CrossRefGoogle ScholarPubMed
Lockshin, R. A. and Williams, C. M. (1964). Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J. Insect Physiol., 10, 643CrossRefGoogle Scholar
Lohmann, I., McGinnis, N., Bodmer, M., and McGinnis, W. (2002). The Drosophila Hox gene Deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell, 110, 457–66CrossRefGoogle ScholarPubMed
Marguet, D., Luciani, M. F., Moynault, A., Williamson, P., and Chimini, G. (1999). Engulfment of apoptotic cells involves the redistribution of membrane phosphatidylserine on phagocyte and prey. Nat. Cell Biol., 1, 454–6CrossRefGoogle ScholarPubMed
Merino, R., Rodriguez-Leon, J., Macias, D., Ganan, Y., Economides, A. N., and Hurle, J. M. (1999). The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development, 126, 5515–22Google ScholarPubMed
Milan, M., Perez, L., and Cohen, S. M. (2002). Short-range cell interactions and cell survival in the Drosophila wing. Dev. Cell, 2, 797–805CrossRefGoogle ScholarPubMed
Moreno, E., Basler, K., and Morata, G. (2002a). Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature, 416, 755–9CrossRefGoogle Scholar
Moreno, E., Yan, M., and Basler, K. (2002b). Evolution of TNF signaling mechanisms. JNK-dependent apoptosis triggered by Eiger, the Drosophila homolog of the TNF Superfamily. Curr. Biol., 12, 1263–8CrossRefGoogle Scholar
Nellen, D., Burke, R., Struhl, G., and Basler, K. (1996). Direct and long-range action of a DPP morphogen gradient. Cell, 85, 357–68CrossRefGoogle ScholarPubMed
Rathmell, J. C. and Thompson, C. B. (2002). Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell, 109, S97–107CrossRefGoogle ScholarPubMed
Reddien, P. W., Cameron, S., and Horvitz, H. R. (2001). Phagocytosis promotes programmed cell death in C. elegans. Nature, 412, 198–202CrossRefGoogle ScholarPubMed
Ryoo, H. D., Bergmann, A., Gonen, H., Ciechanover, A., and Steller, H. (2002). Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat. Cell Biol., 4, 432–8CrossRefGoogle ScholarPubMed
Savill, J. and Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature, 407, 784–8CrossRefGoogle ScholarPubMed
Schumacher, B., Hofmann, K., Boulton, S., and Gartner, A. (2001). The C. elegans homolog of the p53 tumor suppressor is required for DNA damage induced apoptosis. Curr. Biol., 11, 1722–7CrossRefGoogle Scholar
Scott, R. S., McMahon, E. J., Pop, S. M.et al. (2001). Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature, 411, 207–11CrossRefGoogle ScholarPubMed
Simpson, P. and Morata, G. (1981). Differential mitotic rates and patterns of growth in compartments in the Drosophila wing. Dev. Biol., 85: 299–308CrossRefGoogle ScholarPubMed
Sulston, J. E. and Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol., 56, 110–56CrossRefGoogle ScholarPubMed
Susin, S. A., Lorenzo, H. K., Zamzami, N.et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 397, 441–6CrossRefGoogle ScholarPubMed
Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell, 8, 613–21CrossRefGoogle ScholarPubMed
Tata, J. R. (1966). Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. Dev. Biol., 13, 77–94CrossRefGoogle ScholarPubMed
Tepass, U., Fessler, L. I., Aziz, A., and Hartenstein, V. (1994). Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development, 120, 1829–37Google ScholarPubMed
Varkey, J., Chen, P., Jemmerson, R., and Abrams, J. M. (1999). Altered cytochrome c display precedes apoptotic cell death in Drosophila. J. Cell Biol., 144, 701–10CrossRefGoogle ScholarPubMed
Vogt, C. (1842). Untersuchungen über die Entwicklungsgeschichte der Geburtshelferkroete (Alytes obstetricans)
Wang, S. L., Hawkins, C. J., Yoo, S. J., Muller, H. A., and Hay, B. A. (1999). The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell, 98, 453–63CrossRefGoogle ScholarPubMed
Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev., 15, 2922–33Google ScholarPubMed
Wei, C., Zong, W.-X., Cheng, E. H.-Y.et al. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science, 292, 727–30CrossRefGoogle ScholarPubMed
Weil, M., Jacobson, M. D., and Raff, M. C. (1997). Is programmed cell death required for neural tube closure?Curr. Biol., 7, 281–4CrossRefGoogle ScholarPubMed
White, K. (2000). Cell death: Drosophila Apaf-1 – no longer in the (d)Ark. Curr. Biol., 10, R167–9CrossRefGoogle ScholarPubMed
White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K., and Steller, H. (1994). Genetic control of programmed cell death in Drosophila. Science, 264, 677–83CrossRefGoogle ScholarPubMed
Wilson, R., Ditzel, M., Zachariou, A.et al. (2002). The DIAP1 RING finger mediates ubiquitination of Dronc and is indispensable for regulating apoptosis. Nat. Cell Biol., 4, 445–50CrossRefGoogle ScholarPubMed
Yoshida, H., Kong, Y. Y., Yoshida, R.et al. (1998). Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell, 94, 739–50CrossRefGoogle ScholarPubMed
Yoo, S. J., Huh, J. R., Muro, I.et al. (2002). Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol., 4: 416–24CrossRefGoogle ScholarPubMed
Yuan, J. and Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802–9CrossRefGoogle Scholar
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1-beta-converting enzyme. Cell, 75, 641–52CrossRefGoogle Scholar
Zecca, M., Basler, K., and Struhl, G. (1995). Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development, 121, 2265–78Google ScholarPubMed
Zhou, L., Hashimi, H., Schwartz, L. M., and Nambu, J. R. (1995). Programmed cell death in the Drosophila central nervous system midline. Curr. Biol., 5, 784–90CrossRefGoogle ScholarPubMed
Zhou, L., Song, Z., Tittel, J., and Steller, H. (1999). HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol. Cell, 4, 745–55CrossRefGoogle ScholarPubMed
Zimmermann, K. C., Ricci, J. E., Droin, N. M., and Green, D. R. (2002). The role of ARK in stress-induced apoptosis in Drosophila cells. J. Cell Biol., 156, 1077–87CrossRefGoogle ScholarPubMed
Zou, H. and Niswander, L. (1996). Requirement for BMP signaling in interdigital apoptosis and scale formation. Science, 272, 738–41CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×