Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T05:23:17.906Z Has data issue: false hasContentIssue false

15 - Computational linear MHD

Published online by Cambridge University Press:  05 March 2013

J. P. Goedbloed
Affiliation:
FOM-Institute for Plasma Physics
Rony Keppens
Affiliation:
Katholieke Universiteit Leuven, Belgium
Stefaan Poedts
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

Computational magnetohydrodynamics is a very active research field due to the increasing demand for quantitative results for realistic magnetic configurations on the one hand and the availability of ever more computer power on the other [373]. Many MHD phenomena can not be described by analytical methods in all of their complexity although simplified analytical models have led to indispensable insight into the fundamental physics of various magnetohydrodynamic processes. The intricate geometry of present tokamaks, for instance, forces theory to resort to computer simulations as the mathematics is not fully tractable anymore. The fast increase of computer speed and memory allows simulations with ever more “physics” in the equations and taking into account the full 3D geometrical effects.

While the governing ideal MHD equations form a set of nonlinear, hyperbolic, partial differential equations, we already encountered many magneto-fluid phenomena which are adequately modeled by means of the linearized MHD equations. In this chapter, we concentrate mostly on computational approaches for linear MHD problems, and introduce several basic numerical concepts and techniques along the way. We give a brief overview of the most frequently encountered spatial discretizations to translate any problem expressed as a (set of) differential equation(s) into a discrete linear algebraic problem, and discuss commonly used strategies for solving the resulting linear systems and generalized eigenvalue problems. Representative applications cover MHD spectroscopic computations for diagnosing eigenoscillations and stability of given, possibly pre-computed, MHD equilibria, as well as steady-state and time dependent solutions to externally driven MHD configurations. Both ideal and non-ideal linear MHD problems are encountered.

Type
Chapter
Information
Advanced Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas
, pp. 177 - 244
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×