Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T07:16:24.832Z Has data issue: false hasContentIssue false

12 - Waves and instabilities of stationary plasmas

Published online by Cambridge University Press:  05 March 2013

J. P. Goedbloed
Affiliation:
FOM-Institute for Plasma Physics
Rony Keppens
Affiliation:
Katholieke Universiteit Leuven, Belgium
Stefaan Poedts
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

Laboratory and astrophysical plasmas

Grand vision: magnetized plasma on all scales

In Chapter 1 of the preceding Volume [1] we pointed out that, since more than 90% of visible matter in the Universe is plasma, the dynamics of plasmas and the associated magnetic fields are an important constituent of the description of nature. In Chapter 4 [1], we then showed that the equations of magnetohydrodynamics (MHD) are scale-independent: the scales of length, density and magnetic field strength of a magnetically confined plasma may be divided out. This simple fact has the amazing consequence that the macroscopic dynamics of plasmas in both laboratory fusion devices (tokamaks, stellarators, etc.) and astrophysical objects (stellar coronae, accretion disks, spiral arms of galaxies, etc.) may be described by the same equations, viz. the equations of MHD. We encountered several examples of this before, in Volume [1]. In the present Volume [2], we will continue the investigation of this common field of research by means of the new “wide-angle MHD telescope”.

Figure 12.1 shows two representative, but very different, examples from science and technology, viz. the design drawing of the international tokamak experimental reactor ITER, presently under construction, and an image made by the Hubble Space Telescope of the Pinwheel Galaxy M101. The consequence of scaleindependence is that the most obvious difference of the two configurations, their length scale indicated next to the figure, is actually irrelevant for the description of macroscopic plasma dynamics!

Type
Chapter
Information
Advanced Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas
, pp. 3 - 48
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×