Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-08T06:49:11.920Z Has data issue: false hasContentIssue false

4 - Diffusion on one-dimensional surfaces

Published online by Cambridge University Press:  06 July 2010

Grazyna Antczak
Affiliation:
University of Wrocław, Poland; Leibniz Universität Hannover, Germany
Gert Ehrlich
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Surface Diffusion
Metals, Metal Atoms, and Clusters
, pp. 183 - 260
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tung, R. T., Atomic structure and interactions at single crystal metal surfaces, Physics Ph.D. Thesis, University of Pennsylvania, Philadelphia, 1981.
Liu, C. L., Cohen, J. M., Adams, J. B., Voter, A. F., EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt, Surf. Sci. 253 (1991) 334–344.CrossRefGoogle Scholar
Adams, J. B., Foiles, S. M., Wolfer, W. G., Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method, J. Mater. Res. 4 (1989) 102–112.CrossRefGoogle Scholar
Voter, A. F., Chen, S. P., Accurate interatomic potentials for Ni, Al and Ni3Al, Mater. Res. Soc. Symp. Proc. 82 (1987) 175–180.CrossRefGoogle Scholar
Gravil, P. A., Holloway, S., Exchange mechanisms for self-diffusion on aluminum surfaces, Surf. Sci. 310 (1994) 267–272.CrossRefGoogle Scholar
Stumpf, R., Scheffler, M., Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of aluminum and their implications on crystal growth, Phys. Rev. B 53 (1996) 4958–4973.CrossRefGoogle Scholar
Agrawal, P. M., Rice, B. M., Thompson, D. L., Predicting trends in rate parameters for self-diffusion on FCC metal surfaces, Surf. Sci. 515 (2002) 21– 35.CrossRefGoogle Scholar
Sun, Y.-J., Li, J.-M., Self-diffusion mechanisms of adatom on Al(001), (011) and (111) surfaces, Chin. Phys. Lett. 20 (2003) 269–272.Google Scholar
Kresse, G., Hafner, J., Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558–561.CrossRefGoogle ScholarPubMed
Kresse, G., Hafner, J., Ab initio molecular dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251–14269.CrossRefGoogle ScholarPubMed
Kresse, G., Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave set, Phys. Rev. B 54 (1996) 11169–11186.CrossRefGoogle ScholarPubMed
Tung, R. T., Graham, W. R., Single atom self-diffusion on nickel surfaces, Surf. Sci. 97 (1980) 73–87.CrossRefGoogle Scholar
Kellogg, G. L., Direct observations of adatom-surface-atom replacement: Pt on Ni(110), Phys. Rev. Lett. 67 (1991) 216–219.CrossRefGoogle Scholar
Kellogg, G. L., Surface diffusion of Pt adatoms on Ni surfaces, Surf. Sci. 266 (1992) 18–23.CrossRefGoogle Scholar
Graham, A. P., Silvestri, W., Toennies, J. P., in: Surface Diffusion: Atomistic and Collective Processes, NATO ASI Series B: Physics, Tringides, M. C. (ed.), Elementary processes of surface diffusion studied by quasielastic atom scattering (Plenum Press, New York, 1997), 565–580.Google Scholar
Graham, A. P., The low energy dynamics of adsorbates on metal surfaces investigated with helium atom scattering, Surf. Sci. Rep. 49 (2003) 115–168.CrossRefGoogle Scholar
Memmel, N., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Quasi-isotropic scaling behavior on an anisotropic substrate: Ni/Ni(110), Phys. Rev. B 72 (2005) 085411 1–5.CrossRefGoogle Scholar
Maiya, P. S., Blakely, J. M., Surface self-diffusion and surface energy of nickel, J. Appl. Phys. 38 (1967) 698–704.CrossRefGoogle Scholar
Bonzel, H. P., Latta, E. E., Surface self-diffusion on Ni(110): Temperature dependence and directional anisotropy, Surf. Sci. 76 (1978) 275–295.CrossRefGoogle Scholar
Flahive, P. G., Graham, W. R., Pair potential calculations of single atom self-diffusion activation energies, Surf. Sci. 91 (1980) 449–462.CrossRefGoogle Scholar
Liu, C.-L., Adams, J. B., Diffusion mechanisms on Ni surfaces, Surf. Sci. 265 (1992) 262–272.CrossRefGoogle Scholar
Liu, C.-L., Adams, J. B., Diffusion behavior of single adatoms near and at steps during growth of metallic thin films on Ni surfaces, Surf. Sci. 294 (1993) 197–210.CrossRefGoogle Scholar
Rice, B. M., Murthy, C. S., Garrett, B. C., Effects of surface structure and of embedded-atom pair functionals on adatom diffusion on fcc metallic surfaces, Surf. Sci. 276 (1992) 226–240.CrossRefGoogle Scholar
Foiles, S. M., Baskes, M. I., Daw, M. S., Embedded-atom-method functions for the fcc metals Cu, Ag, Ni, Pd, Pt, and their alloys, Phys. Rev. B 33 (1986) 7983–7991.CrossRefGoogle ScholarPubMed
Oh, D. J., Johnson, R. A., Simple embedded atom method model for fcc and hcp metals, J. Mater. Res. 3 (1988) 471–478.CrossRefGoogle Scholar
Ackland, G. J., Tichy, G., Vitek, V., Finnis, M. W., Simple N-body potentials for the noble metals and nickel, Philos. Mag. A 56 (1987) 735–756.CrossRefGoogle Scholar
Stoltze, P., Simulation of surface defects, J. Phys.: Condens. Matter 6 (1994) 9495–9517.Google Scholar
Perkins, L. S., DePristo, A. E., Self-diffusion of adatoms on fcc(110) surfaces, Surf. Sci. 317 (1994) L1152–1156.CrossRefGoogle Scholar
Haug, K., Jenkins, T., Effects of hydrogen on the three-dimensional epitaxial growth of Ni(100), (110), and (111), J. Phys. Chem. B 104 (2000) 10017–10023.CrossRefGoogle Scholar
Wonchoba, S. E., Hu, W. H., Truhlar, D. G., Surface diffusion of H on Ni(100): Interpretation of the transition temperature, Phys. Rev. B 51 (1995) 9985–10002.CrossRefGoogle ScholarPubMed
Kürpick, U., Self-diffusion on (100), (110), and (111) surfaces of Ni and Cu: A detailed study of prefactors and activation energies, Phys. Rev. B 64 (2001) 075418 1–7.CrossRefGoogle Scholar
Ndongmouo, U. T., Hontinfinde, F., Diffusion and growth on fcc(110) metal surfaces: a computational study, Surf. Sci. 571 (2004) 89–101.CrossRefGoogle Scholar
Kong, L. T., Lewis, L. J., Transition state theory of the preexponential factors for self-diffusion on Cu, Ag, and Ni surfaces, Phys. Rev. B 74 (2006) 073412 1–4.CrossRefGoogle Scholar
Kim, S. Y., Lee, I.-H., Jun, S., Transition-pathway models of atomic diffusion on fcc metal surfaces. I. Flat surfaces, Phys. Rev. B 76 (2007) 245407 1–15.Google Scholar
Tung, R. T., Graham, W. R., Single atom self-diffusion on Ni(331), J. Chem. Phys. 68 (1978) 4764–4765.CrossRefGoogle Scholar
Merikoski, J., Vattulainen, I., Heinonen, J., Ala-Nissila, T., Effect of kinks and concerted diffusion mechanisms on mass transport and growth on stepped metal surfaces, Surf. Sci. 387 (1997) 167–182.CrossRefGoogle Scholar
Robinson, I. K., Whiteaker, K. L., Walko, D. A., Cu island growth on Cu(110), Physica B 221 (1996) 70–76.CrossRefGoogle Scholar
Wynblatt, P., Gjostein, N. A., A calculation of relaxation, migration and formation energies for surface defects in copper, Surf. Sci. 12 (1968) 109–127.CrossRefGoogle Scholar
Hansen, L., Stoltze, P., Jacobsen, K. W., Nørskov, J. K., Self-diffusion on copper surfaces, Phys. Rev. B 44 (1991) 6523–6526.CrossRefGoogle Scholar
Karimi, M., Tomkowski, T., Vidali, G., Biham, O., Diffusion of Cu on Cu surface, Phys. Rev. B 52 (1995) 5364–5374.CrossRefGoogle Scholar
Chen, C. L., Tsong, T. T., Self-diffusion on the reconstructed and nonreconstructed Ir(110) surfaces, Phys. Rev. Lett. 66 (1991) 1610–1613.CrossRefGoogle ScholarPubMed
Evangelakis, G. A., Kallinteris, G. C., Papanicolaou, N. I., Molecular dynamics study of gold adatom diffusion on low-index copper surfaces, Surf. Sci. 394 (1997) 185–191.CrossRefGoogle Scholar
Evangelakis, G. A., Papageorgiou, D. G., Kallinteris, G. C., Lekka, C. E., Papanicolaou, N. I., Self-diffusion processes of copper adatom on Cu(110) surface by molecular dynamics simulations, Vacuum 50 (1998) 165–169.CrossRefGoogle Scholar
Mottet, C., Ferrando, R., Hontinfinde, F., Levi, A. C., A Monte Carlo simulation of submonolayer homoepitaxial growth on Ag(110) and Cu(110), Surf. Sci. 417 (1998) 220–237.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., Jumps and concerted moves in Cu, Ag, and Au(110) adatom self-diffusion, Phys. Rev. B 59 (1999) 5881–5891.CrossRefGoogle Scholar
Prévot, G., Cohen, C., Schmaus, D., Pontikis, V., Non-isotropic surface diffusion of lead on Cu(110): a molecular dynamics study, Surf. Sci. 459 (2000) 57–68.CrossRefGoogle Scholar
Wang, Z., Li, Y., Adams, J. B., Kinetic lattice Monte Carlo simulation of facet growth rate, Surf. Sci. 450 (2000) 51–63.CrossRefGoogle Scholar
Yildirim, H., Kara, A., Durukanoglu, S., Rahman, T. S., Calculated pre-exponential factors and energetics for adatom hopping on terraces and steps of Cu(100) and Cu(110), Surf. Sci. 600 (2006) 484–492.CrossRefGoogle Scholar
Durukanoglu, S., Trushin, O. S., Rahman, T. S., Effect of step-step separation on surface diffusion processes, Phys. Rev. B 73 (2006) 125426 1–6.CrossRefGoogle Scholar
Kong, L. T., Lewis, L. J., Surface diffusion coefficient: Substrate dynamics matters, Phys. Rev. B 77 (2008) 165422 1–5.CrossRefGoogle Scholar
Stepanyuk, V. S., Negulyaev, N. N., Saletsky, A. M., Hergert, W., Growth of Co nanostructures on Cu(110): Atomistic scale simulations, Phys. Rev. B 78 (2008) 113406 1–4.CrossRefGoogle Scholar
Roulet, C. A., Diffusion en surface de l'argent sur le plan (001), (111), (110) et des surfaces vicinales du cuivre, Surf. Sci. 36 (1973) 295–316.CrossRefGoogle Scholar
Ghaleb, D., Perraillon, B., Anisotropy of surface diffusion of silver on (331) and (110) clean copper surface at low temperature, Surf. Sci. 162 (1985) 103–108.CrossRefGoogle Scholar
Kürpick, U., Meister, G., Goldmann, A., Diffusion of Ag on Cu(110) and Cu(111) studied by spatially resolved UV-photoemission, Appl. Surf. Sci. 89 (1995) 383–392.CrossRefGoogle Scholar
Prévot, G., Cohen, C., Moulin, J., Schmaus, D., Surface diffusion of Pb on Cu(110) at low coverage: competition between exchange and jump, Surf. Sci. 421 (1999) 364–376.CrossRefGoogle Scholar
Naumovets, A. G., Paliy, M. V., Vedula, Y. S., Loburets, A. T., Senenko, N. B., Diffusion of Lithium and Strontium on Mo(112), Prog. Surf. Sci. 48 (1995) 59–70.CrossRefGoogle Scholar
Loburets, A. T., Senenko, N. B., Naumovets, A. G., Vedula, Y. S., Surface diffusion of strontium on the molybdenum (112) plane, Phys. Low-Dim. Struct. 10/11 (1995) 49–56.Google Scholar
Loburets, A. T., Naumovets, A. G., Vedula, Y. S., Diffusion of dysprosium on the (112) surface of molybdenum, Surf. Sci. 399 (1998) 297–304.CrossRefGoogle Scholar
Loburets, A. T., Surface diffusion and phase transitions in copper overlayers on the (211) surfaces of molybdenum and tungsten, Metallofizika I Noveishie Tekhnologii 21 (1999) 47–51.Google Scholar
Ayrault, G., Ehrlich, G., Surface self-diffusion on an fcc crystal: An atomic view, J. Chem. Phys. 60 (1974) 281–294.CrossRefGoogle Scholar
Kellogg, G. L., Diffusion of individual platinum atoms on single-crystal surfaces of rhodium, Phys. Rev. B 48 (1993) 11305–11312.CrossRefGoogle Scholar
Bucher, J. P., Hahn, E., Fernandez, P., Massobrio, C., Kern, K., Transition from one- to two-dimensional growth of Cu on Pd(110) promoted by cross-exchange migration, Europhys. Lett. 27 (1994) 473–478.CrossRefGoogle Scholar
Massobrio, C., Fernandez, P., Cluster adsorption on metallic surfaces: Structure and diffusion in the Cu/Pd(110) and Pd/Pd(110) systems, J. Chem. Phys. 102 (1995) 605–610.CrossRefGoogle Scholar
Fernandez, P., Massobrio, C., Blandin, P., Buttet, J., Embedded atom method computations of structural and dynamic properties of Cu and Ag clusters adsorbed on Pd(110) and Pd(100): evolution of the most stable geometries versus cluster size, Surf. Sci. 307–309 (1994) 608–613.CrossRefGoogle Scholar
Li, Y., Bartelt, M. C., Evans, J. W., Waelchli, N., Kampshoff, E., Kern, K., Transition from one- to two-dimensional island growth on metal (110) surfaces induced by anisotropic corner rounding, Phys. Rev. B 56 (1997) 12539–12543.CrossRefGoogle Scholar
Morgenstern, K., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Transition from one-dimensional to two-dimensional island decay on an anisotropic surface, Phys. Rev. Lett. 83 (1999) 1613–1616.CrossRefGoogle Scholar
Giorgi, C., Aihemaiti, P., Mongeot, F. Buatier, Boragno, C., Ferrando, R., Valbusa, U., Submonolayer homoepitaxial growth on Ag(110), Surf. Sci. 487 (2001) 49–54.CrossRefGoogle Scholar
Pedemonte, L., Tatarek, R., Bracco, G., Self-diffusion on Ag(110) studied by quasielastic He-atom scattering, Surf. Sci. 502–503 (2002) 341–346.CrossRefGoogle Scholar
Pedemonte, L., Tatarek, R., Vladiskovic, M., Bracco, G., Anisotropic self-diffusion on Ag(110), Surf. Sci. 507–510 (2002) 129–134.CrossRefGoogle Scholar
Pedemonte, L., Bracco, G., Surface disordering of Ag(110) studied by a new high resolution scattering apparatus, Surf. Sci. 513 (2002) 308–314.CrossRefGoogle Scholar
Pedemonte, L., Tatarek, R., Bracco, G., Surface self-diffusion at intermediate temperature: The Ag(110) case, Phys. Rev. B 66 (2002) 045414 1–5.CrossRefGoogle Scholar
Johnson, R. A., Gold on silver{110}: an embedded-atom-method study, Modelling Sim. Mater. Sci. Eng. 2 (1994) 985–994.CrossRefGoogle Scholar
Rousset, S., Chiang, S., Fowler, D. E., Chambliss, D. D., Intermixing and three-dimensional islands in the epitaxial growth of Au on Ag(110), Phys. Rev. Lett. 69 (1992) 3200–3203.CrossRefGoogle Scholar
Hirschorn, E. S., Lin, D. S., Hansen, E. D., Atomic burrowing and hole formation for Au growth on Ag(110), Surf. Sci. 323 (1995) L299–304.CrossRefGoogle Scholar
Hontinfinde, F., Ferrando, R., Levi, A. C., Diffusion processes relevant to the epitaxial growth of Ag on Ag(110), Surf. Sci. 366 (1996) 306–316.CrossRefGoogle Scholar
Ferrando, R., Correlated jump-exchange processes in the diffusion of Ag on Ag(110), Phys. Rev. Lett. 76 (1996) 4195–4198.CrossRefGoogle Scholar
Rusponi, S., Boragno, C., Ferrando, R., Hontinfinde, F., Valbusa, U., Time evolution of adatom and vacancy clusters on Ag(110), Surf. Sci. 440 (1999) 451–459.CrossRefGoogle Scholar
Nie, J. L., Xiao, H. Y., Zu, X. T., Gao, F., First-principles study of Sb adsorption on Ag(110)(2 × 2), Chem. Phys. 326 (2006) 583–588.CrossRefGoogle Scholar
Davis, H. L., Wang, G.-C., Registry relaxation of the W(211) surface – a (1 × 1) reconstruction, Bull. Am. Phys. Soc 29 (1984) 221.Google Scholar
Grizzi, O., Shi, M., Bu, H., Rabalais, J. W., Hochmann, P., Time of flight scattering and recoiling spectrometry. I. Structure of the W(211) surface, Phys. Rev. B 40 (1989) 10127–10146.CrossRefGoogle ScholarPubMed
Antczak, G., Ehrlich, G., Asymmetric one-dimensional random walks, J. Chem. Phys. 129 (2008) 124702 1–4.CrossRefGoogle ScholarPubMed
Ehrlich, G., Hudda, F. G., Atomic view of surface self-diffusion: Tungsten on tungsten, J. Chem. Phys. 44 (1966) 1039–1049.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., Field ion microscope studies of transition metal adatom difusion on (110), (211) and (321) tungsten surfaces, J. Phys. D 3 (1970) 707–716.CrossRefGoogle Scholar
Graham, W. R., Ehrlich, G., Surface self-diffusion of single atoms, Thin Solid Films 25 (1975) 85–96.CrossRefGoogle Scholar
Flahive, P. G., Graham, W. R., The determination of single atom surface site geometry on W(111), W(211) and W(321), Surf. Sci. 91 (1980) 463–488.CrossRefGoogle Scholar
Wang, S. C., Ehrlich, G., Adatom diffusion on W(211): Re, W, Mo, Ir and Rh, Surf. Sci. 206 (1988) 451–474.CrossRefGoogle Scholar
Senft, D. C., Ehrlich, G., Long jumps in surface diffusion: One-dimensional migration of isolated adatoms, Phys. Rev. Lett. 74 (1995) 294–297.CrossRefGoogle Scholar
Senft, D. C., Long jumps in surface diffusion on tungsten(211), Materials Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, 1994.
Antczak, G., Long jumps in one-dimensional surface self-diffusion: Rebound transitions, Phys. Rev. B 73 (2006) 033406 1–4.CrossRefGoogle Scholar
Tringides, M., Gomer, R., Diffusion anisotropy of oxygen and of tungsten on the tungsten(211) plane, J. Chem. Phys. 84 (1986) 4049–4061.CrossRefGoogle Scholar
Kellogg, G. L., Electric field inhibition and promotion of exchange diffusion on Pt(001), Phys. Rev. Lett. 70 (1993) 1631–1634.CrossRefGoogle Scholar
Gong, Y. M., Gomer, R., Thermal roughening on stepped tungsten surfaces I. The zone (011) – (112), J. Chem. Phys. 88 (1988) 1359–1369.CrossRefGoogle Scholar
Choi, D.-S., Gomer, R., Diffusion of W on a W(211) plane, Surf. Sci. 230 (1990) 277–282.CrossRefGoogle Scholar
Gong, Y. M., Surface self-diffusion studies on the W(112) plane by the field emission method, Surf. Sci. 266 (1992) 30–34.CrossRefGoogle Scholar
Ehrlich, G., Kirk, C. F., Binding and field desorption of individual tungsten atoms, J. Chem. Phys. 48 (1968) 1465–1480.CrossRefGoogle Scholar
Wynblatt, P., Gjostein, N. A., A calculation of migration energies and binding energies for tungsten adatoms on tungsten surfaces, Surf. Sci. 22 (1970) 125–136.CrossRefGoogle Scholar
Doll, J. D., McDowell, H. K., Theoretical studies of surface diffusion: Self-diffusion in the bcc (211) System, Surf. Sci. 123 (1982) 99–105.CrossRefGoogle Scholar
Voter, A. F., Doll, J. D., Transition state theory description of surface self-diffusion: Comparison with classical trajectory results, J. Chem. Phys. 80 (1984) 5832–5838.CrossRefGoogle Scholar
Xu, W., Adams, J. B., W single adatom diffusion on W surfaces, Surf. Sci. 319 (1994) 58–67.CrossRefGoogle Scholar
Sakata, T., Nakamura, S., Surface diffusion of molybdenum atoms on tungsten surfaces, Surf. Sci. 51 (1975) 313–317.CrossRefGoogle Scholar
Wang, S. C., Wrigley, J. D., Ehrlich, G., Atomic jump lengths in surface diffusion: Re, Mo, Ir, and Rh on W(211), J. Chem. Phys. 91 (1989) 5087–5096.CrossRefGoogle Scholar
Senft, D. C., Atomic jump length in surface diffusion: Experiment and theory, Appl. Surf. Sci. 94/95 (1996) 231–237.CrossRefGoogle Scholar
Fu, T.-Y., Cheng, L.-C., Hwang, Y.-J., Tseng, T. T., Diffusion of Pd adatoms on W surfaces and their interactions with steps, Surf. Sci. 507–510 (2002) 103–107.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., The effect of an electric field on the surface diffusion of rhenium adsorbed on tungsten, Brit. J. Appl. Phys. (J. Phys. D) 2 (1969) 13–16.CrossRefGoogle Scholar
Stolt, K., Graham, W. R., Ehrlich, G., Surface diffusion of individual atoms and dimers: Re on W(211), J. Chem. Phys. 65 (1976) 3206–3222.CrossRefGoogle Scholar
Reed, D. A., Ehrlich, G., Chemical specificity in the surface diffusion of clusters: Ir on W(211), Philos. Mag. 32 (1975) 1095–1099.CrossRefGoogle Scholar
Bassett, D. W., Parsley, M. J., Field ion microscopic studies of transition metal adatom diffusion on (110), (211) and (321) tungsten surfaces, J. Phys. D 3 (1970) 707–716.CrossRefGoogle Scholar
Jones, J. P., Jones, N. T., Field emission microscopy of gold on single-crystal planes of tungsten, Thin Solid Films 35 (1976) 83–97.CrossRefGoogle Scholar
Bayat, B., Wassmuth, H.-W., Directional dependence of the surface diffusion of potassium on tungsten (112), Surf. Sci. 133 (1983) 1–8.CrossRefGoogle Scholar
Biernat, T., Kleint, C., Meclewski, R., Surface diffusion of lithium across and along atomic rows on the W(211) plane, Appl. Surf. Sci. 67 (1993) 206–210.CrossRefGoogle Scholar
Loburets, A. T., Naumovets, A. G., Senenko, N. B., Vedula, Y. S., Surface diffusion and phase transitions in strontium overlayers on W(112), Z. Phys. Chem. 202 (1997) 75–85.CrossRefGoogle Scholar
Nishigaki, S., Nakamura, S., FIM observation of interactions between W atoms on W surfaces, Jpn. J. Appl. Phys. 14 (1975) 769–777.CrossRefGoogle Scholar
Wrigley, J. D., Ehrlich, G., Surface diffusion by an atomic exchange mechanism, Phys. Rev. Lett. 44 (1980) 661–663.CrossRefGoogle Scholar
Wrigley, J. D., Surface diffusion by an atomic exchange mechanism, Physics Ph.D. Thesis, University of Illinois at Urbana-Champaign, 1982.
Chen, C. L., Tsong, T. T., Self-diffusion on reconstructed and nonreconstructed Ir surfaces, J. Vac. Sci. Technol. A 10 (1992) 2178–2184.CrossRefGoogle Scholar
Chen, C. L., Tsong, T. T., Zhang, L. H., Yu, Z. W., Atomic replacement and adatom diffusion: Re on Ir surfaces, Phys. Rev. B 46 (1992) 7803–7807.CrossRefGoogle Scholar
Fu, T.-Y., Tzeng, Y.-R., Tsong, T. T., Self-diffusion and dynamic behavior of atoms at step edges of iridium surfaces, Phys. Rev. B 54 (1996) 5932–5939.CrossRefGoogle ScholarPubMed
Shiang, K.-D., Wei, C. M., Tsong, T. T., A molecular dynamics study of self-diffusion on metal surfaces, Surf. Sci. 301 (1994) 136–150.CrossRefGoogle Scholar
Chang, C. M., Wei, C. M., Chen, S. P., Modeling of Ir adatoms on Ir surfaces, Phys. Rev. B 54 (1996) 17083–17096.CrossRefGoogle ScholarPubMed
Bassett, D. W., Webber, P. R., Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces, Surf. Sci. 70 (1978) 520–531.CrossRefGoogle Scholar
Kellogg, G. L., Field-ion microscope observations of surface self-diffusion and atomic interactions on Pt, Microbeam Analysis 1986 (1986) 399–402.Google Scholar
Kellogg, G. L., Surface self-diffusion of Pt on the Pt(311) plane, J. Physique 47 (1986) C2 – 331–336.Google Scholar
Preuss, E., Freyer, N., Bonzel, H. P., Surface self-diffusion on Pt(110): Directional dependence and influence of surface-energy anisotropy, Appl. Phys. A 41 (1986) 137–143.CrossRefGoogle Scholar
Kellogg, G. L., Diffusion of Pd adatoms and stability of Pd overlayers on the (011) surface of Pt, Phys. Rev. B 45 (1992) 14354–14357.CrossRefGoogle ScholarPubMed
Linderoth, T. R., Horch, S., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Surface diffusion of Pt on Pt(110): Arrhenius behavior of long jumps, Phys. Rev. Lett. 78 (1997) 4978–4981.CrossRefGoogle Scholar
Linderoth, T. R., Horch, S., Laegsgaard, E., Stensgaard, I., Besenbacher, F., Dynamics of Pt adatoms and dimers on Pt(110)-(1 × 2) observed directly by STM, Surf. Sci. 402–404 (1998) 308–312.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., Competing mechanisms in adatom diffusion on a channeled surface: Jumps versus metastable walks, Phys. Rev. B 58 (1998) 3617–3620.CrossRefGoogle Scholar
Montalenti, F., Ferrando, R., An MD study of adatom self-diffusion on Au(110) surfaces, Surf. Sci. 433–435 (1999) 445–448.CrossRefGoogle Scholar
Lorensen, H. T., Nørskov, J. K., Jacobsen, K. W., Mechanism of self-diffusion on Pt(110), Phys. Rev. B 60 (1999) R5149–5152.CrossRefGoogle Scholar
Halicioglu, T., Pound, G. M., A calculation of the diffusion energies for adatoms on surfaces of FCC metals, Thin Solid Films 57 (1979) 241–245.CrossRefGoogle Scholar
Halicioglu, T., An atomistic calculation of two-dimensional diffusion of a Pt adatom on a Pt(110) surface, Surf. Sci. 79 (1979) L346–348.CrossRefGoogle Scholar
Villarba, M., Jónsson, H., Diffusion mechanisms relevant to metal crystal growth: Pt/Pt(111), Surf. Sci. 317 (1994) 15–36.CrossRefGoogle Scholar
Feibelman, P. J., Ordering of self-diffusion barrier energies on Pt(110)-(1 × 2), Phys. Rev. B 61 (2000) R2452–2455.CrossRefGoogle Scholar
Günther, S., Hitzke, A., Behm, R. J., Low adatom mobility on the (1 × 2)-missing-row reconstructed Au(110) surface, Surf. Rev. Lett. 4 (1997) 1103.CrossRefGoogle Scholar
Hitzke, A., Hugenschmidt, M. B., Behm, R. J., Low temperature Ni atom adsorption on the Au(110)-(1 × 2) surface, Surf. Sci. 389 (1997) 8–18.CrossRefGoogle Scholar
Roelofs, L. D., Martin, J. I., Sheth, R., Competition between direct and concerted movements in surface diffusion with application to the Au(110) surface, Surf. Sci. 250 (1991) 17–26.CrossRefGoogle Scholar
Roelofs, L. D., Greenblatt, B. J., Boothe, N., Kinetic prefactors for concerted-mode diffusion: a realistic calculation – Au/Au(110), Surf. Sci. 334 (1995) 248–256.CrossRefGoogle Scholar
Ndongmouo, U. T., Hontinfinde, F., Ferrando, R., Numerical study of the stability of (111) and (331) microfacets on Au, Pt, and Ir(110) surfaces, Phys. Rev. B 72 (2005) 115412 1–8.CrossRefGoogle Scholar
Fan, W., Gong, X. G., Simulation of Ni cluster diffusion on Au(110)-(1 × 2) surface, Appl. Surf. Sci. 219 (2003) 117–122.CrossRefGoogle Scholar
Johnson, R. A., Analytical nearest-neighbor model for fcc metals, Phys. Rev. B 37 (1988) 3924–3931.CrossRefGoogle Scholar
Johnson, R. A., Alloy models with the embedded atom method, Phys. Rev. B 39 (1989) 12554–12559.CrossRefGoogle ScholarPubMed
Frenken, J. W. M., Toennies, J. P., Wöll, C., Self-diffusion at a melting surface observed by He scattering, Phys. Rev. Lett. 60 (1988) 1727–1730.CrossRefGoogle Scholar
Frenken, J. W. M., Hinch, B. J., Toennies, J. P., Wöll, C., Anisotropic diffusion at a melting surface studied with He-atom scattering, Phys. Rev. B 41 (1990) 938–946.CrossRefGoogle Scholar
Karimi, M., Vidali, G., Dalins, I., Energetics of the formation and migration of defects in Pb(110), Phys. Rev. B 48 (1993) 8986–8992.CrossRefGoogle Scholar
Roelofs, L. D., Martir, E. I., in: The Structure of Surfaces III, Tong, S. Y., Takayanagi, K., Hove, M. A., Xie, X. D. (eds.), Microscopic kinetics of the (1 × 2) missing row reconstruction of the Au(110) surface, (Milwaukee, Wisconsin, 1991), 248–252.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×