Skip to main content Accessibility help
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T23:54:25.209Z Has data issue: false hasContentIssue false

Chapter 22 - Insect endocrinology and hormone-based pest control products in IPM

Published online by Cambridge University Press:  01 September 2010

Edward B. Radcliffe
University of Minnesota
William D. Hutchison
University of Minnesota
Get access


IPM methods were developed largely in response to the negative consequences of the intensive use of broad-spectrum pesticides in the early to mid twentieth century (Kogan, 1998). These insecticides, belonging to the carbamate, organophosphate and organochlorine families, have unintended side effects such as environmental persistence, bioaccumulation, development of resistance among target pests, toxicity to non-target species (especially natural enemies) and human health risks. While IPM focuses mainly on preventative tactics (e.g. crop rotation) rather than remedial ones, synthetic chemical insecticides are still very much needed to achieve effective control in many agricultural systems.

The study of insect physiology has been driven, in no small part, by the need for safe alternatives to broad-spectrum insecticides. Theoretically at least, digestion, excretion, neuronal communication, metabolism and other physiological processes all comprise “insect-specific” components that are vulnerable and could be targeted by synthetic molecules. To this day, however, IPM-compatible pest control products that target the insect endocrine system far outnumber those targeting other systems. In particular, hormone mimics that control development have enjoyed not only wide appeal but also many commercial successes, and additional control products targeting hormone production and function are currently under development. In this chapter we provide an overview of (1) insect endocrinology, (2) existing control products that mimic ecdysone and juvenile hormone (JH) action and (3) possible development of disruption control strategies based on novel endocrine functions that are likely to generate new IPM tools in the future.

Integrated Pest Management
Concepts, Tactics, Strategies and Case Studies
, pp. 286 - 297
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Addison, J. A. (1996). Safety testing of tebufenozide, a new molt-inducing insecticide, for effects on nontarget forest soil invertebrates. Ecotoxicology and Environmental Safety, 33, 55–61.CrossRefGoogle ScholarPubMed
Ahmad, M., Hollingworth, R. M. & Wise, J. C. (2002). Broad-spectrum insecticide resistance in obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) from Michigan. Pest Management Science, 58, 834–838.CrossRefGoogle ScholarPubMed
Allenza, P. & Eldridge, R. (2007). High-throughput screening and insect genomics for new insecticide leads. In Insecticide Design Using Advanced Technologies, eds. Ishaaya, I., Nauen, R. & Horowitz, A. R., pp. 67–86. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Altstein, M. (2004). Novel insect control agents based on neuropeptide antagonists: the PK/PBAN family as a case study. Journal of Molecular Neuroscience, 22, 147–157.CrossRefGoogle ScholarPubMed
,Anonymous (2002). Evaluation of the New Active Methoxyfenozide in the Product PRODIGY 240 SC Insecticide. Canberra, Australia: National Registration Authority for Agricultural and Veterinary Chemicals. Available at Scholar
,Bombyx mori Biology Analysis Group, Xia, Q., Zhou, Z., Lu, al. (2004). A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306, 1937–1940.Google Scholar
Brown, M. R., Raikhel, A. S. & Lea, A. O. (1985). Ultrastructure of midgut endocrine cells in the adult mosquito, Aedes aegypti. Tissue and Cell, 17, 709–721.Google ScholarPubMed
Butenandt, A. & Karlson, P. (1954). Über die Isolierung eines Metamorphosen-Hormons der Insekten in kristallisierter Form. Zeitschrift fur Naturforschung, 9B, 389–391.Google Scholar
Cadogan, B. L., Thompson, D. G., Retnakaran, al. (1998). Deposition of aerially applied tebufenozide (RH-5992) on balsam fir (Abies balsamea) and its control of spruce budworm (Choristoneura fumiferana [Clem.]). Pesticide Science, 53, 80–90.3.0.CO;2-B>CrossRefGoogle Scholar
Cadogan, B. L., Scharbach, R. D., Knowles, K. R. & Krause, R. E. (2005). Efficacy evaluation of a reduced dosage of tebufenozide applied aerially to control spruce budworm (Choristoneura fumiferana). Crop Protection, 24, 557–563.CrossRefGoogle Scholar
Castillo, M., Moya, P., Couillaud, F., Garcerá, M. D. & Martinez-Pardo, R. (1998). A heterocyclic oxime from a fungus with anti-juvenile hormone activity. Archives of Insect Biochemistry and Physiology, 37, 287– 294.3.0.CO;2-O>CrossRefGoogle Scholar
Charrois, G. J. R., Mao, H. & Kaufman, W. R. (1996). Impact on salivary gland degeneration by putative ecdysteroid antagonists and agonists in the ixodid tickAmblyomma hebraeum. Pesticide Biochemistry and Physiology, 55, 140–149.CrossRefGoogle ScholarPubMed
Claeys, I., Simonet, G., Loy, T., Loof, A. & Vanden Broeck, J. (2003). cDNA cloning and transcript distribution of two novel members of the neuroparsin family in the desert locust, Schistocerca gregaria. Insect Molecular Biology, 12, 473–481.CrossRefGoogle ScholarPubMed
Claeys, I., Breugelmans, B., Simonet, al. (2006). Regulation of Schistocerca gregaria neuroparsin transcript levels by juvenile hormone and 20-hydroxyecdysone. Archives of Insect Biochemistry and Physiology, 62, 107–115.CrossRefGoogle ScholarPubMed
Cusson, M. (2004). Juvenile hormone. In Encyclopedia of Entomology, ed. Capinera, J. L., pp. 1228–1230. Dordrecht, Netherlands: Kluwer.Google Scholar
Cusson, M. & Palli, S. R. (2000). Can juvenile hormone research help rejuvenate integrated pest management?Canadian Entomologist, 132, 263–280.CrossRefGoogle Scholar
Cusson, M., Béliveau, C., Sen, S. al. (2006). Characterization and tissue-specific expression of two lepidopteran farnesyl diphosphate synthase homologs: implications for the biosynthesis of ethyl-substituted juvenile hormones. Proteins, 65, 742–758.CrossRefGoogle ScholarPubMed
Davey, M., Duve, H., Thorpe, A. & East, P. (2005). Helicostatins: brain-gut peptides of the moth, Helicoverpa armigera (Lepidoptera: Noctuidae). Archives of Insect Biochemistry and Physiology, 58, 1–16.CrossRefGoogle Scholar
Davis, N. T., Blackburn, M. B., Golubeva, E. G. & Hildebrand, J. G. (2003). Localization of myoinhibitory peptide immunoreactivity in Manduca sexta and Bombyx mori, with indications that the peptide has a role in molting and ecdysis. Journal of Experimental Biology, 206, 1449–1460.CrossRefGoogle Scholar
Dhadialla, T. S., Carlson, G. R. & Le, D. P. (1998). New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology, 43, 545–569.CrossRefGoogle ScholarPubMed
Dhadialla, T. S., Retnakaran, A. & Smagghe, G. (2005). Insect growth- and development-disrupting insecticides. In Comprehensive Molecular Insect Science, vol. 6, eds. Gilbert, L. I., Iatrou, K. & Gill, S. S., pp. 55–117. St Louis, MO: Elsevier.CrossRefGoogle Scholar
Dinan, L. (2001). Phytoecdysteroids: biological aspects. Phytochemistry, 57, 325–339.CrossRefGoogle ScholarPubMed
Dinan, L., Whiting, P., Girault, J. al. (1997). Cucurbitacins are insect steroid hormone antagonists acting at the ecdysteroid receptor. Biochemical Journal, 327, 643–650.CrossRefGoogle ScholarPubMed
Doucet, D., Cusson, M. & Retnakaran, A. (2007a). Insect endocrinology and hormone-based pest control products in IPM. Table 1. In Radcliffe's IPM World Textbook, eds. Radcliffe, E. B., Hutchison, W. D. and Cancelado, R. E.. Available at Scholar
Doucet, D., Cusson, M. & Retnakaran, A. (2007b). Insect endocrinology and hormone-based pest control products in IPM. Table 2. In Radcliffe's IPM World Textbook, eds. Radcliffe, E. B., Hutchison, W. D. and Cancelado, R. E.. Available at Scholar
Fussnecker, B. L., Smith, B. H. & Mustard, J. A. (2006). Octopamine and tyramine influence the behavioral profile of locomotor activity in the honeybee (Apis mellifera). Journal of Insect Physiology, 52, 1083– 1092.CrossRefGoogle Scholar
Gilbert, L. I. & Warren, J. T. (2005). A molecular genetic approach to the biosynthesis of the insect steroid molting hormone. Vitamins and Hormones, 73, 32–59.Google ScholarPubMed
Gole, J. W. D. & Downer, R. G. H. (1979). Elevation of adenosine 3′, 5′-monophosphate by octopamine in fat body of the American cockroach Periplaneta americana L. Comparative Biochemistry and Physiology, 64C, 223–226.Google Scholar
Hasegawa, K. (1957). The diapause hormone of the silkworm, Bombyx mori. Nature, 179, 1300–1301.CrossRefGoogle Scholar
Hauser, F., Cazzamali, G., Williamson, M., Blenau, W. & Grimmelikhuijzen, C. J. (2006). A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honeybee Apis mellifera. Progress in Neurobiology, 80, 1–19.CrossRefGoogle Scholar
Helvig, C., Koener, J. F., Unnithan, G. C. & Feyereisen, R. (2004). CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proceedings of the National Academy of Science of the USA, 101, 4024–4029.CrossRefGoogle ScholarPubMed
Henderson, J. (2005). Ernest Starling and “hormones”: an historical commentary. Journal of Endocrinology, 184, 5–10.CrossRefGoogle Scholar
Holt, R. A., Subramanian, G. M., Halpern, Aet al. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298, 129–149.CrossRefGoogle ScholarPubMed
,Honeybee Genome Sequencing Consortium (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931–949.CrossRefGoogle Scholar
Hsu, A. C.-T. (1991). 1,2-Diacyl-1-alkyl-hydrazines: a novel class of insect growth regulators. In Synthesis and Chemistry of Agrochemicals II, eds. Baker, D. R., Fenyes, J. G. & Moberg, W. K., pp. 478–490. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Kethidi, D. R., Li, Y. & Palli, S. R. (2006). Protein kinase C phosphorylation blocks juvenile hormone action. Molecular and Cellular Endocrinology, 247, 127–134.CrossRefGoogle ScholarPubMed
Kim, Y. J., Žitňan, D., Cho, K. al. (2006). Central peptidergic ensembles associated with organization of an innate behavior. Proceedings of the National Academy of Science of the USA, 103, 14211–14216.CrossRefGoogle ScholarPubMed
King-Jones, K. & Thummel, C. S. (2005). Nuclear receptors: a perspective from Drosophila. Nature Reviews Genetics, 6, 311–323.CrossRefGoogle ScholarPubMed
Kogan, M. (1998). Integrated pest management: historical perspectives and contemporary developments. Annual Review of Entomology, 43, 243–270.CrossRefGoogle ScholarPubMed
Kopec, S. (1917). Experiments on metamorphosis of insects. Bulletin of International Academy Cracov B, pp. 57–60.Google Scholar
Kreutzweiser, D. P., Capell, S. S., Wainio-Keizer, K. L. & Eichenber, D.C. (1994). Toxicity of new molt-inducing insecticide (RH-5992) to aquatic macroinvertibrates. Ecotoxicology and Environmental Safety, 28, 14–24.CrossRefGoogle Scholar
Lagueux, M., Hoffmann, J. A., Goltzené, al. (1984). Ecdysteroids in ovaries and embryos of Locusta migratoria. In Biosynthesis Metabolism and Mode of Action of Invertebrate Hormones, eds. Hoffmann, J. A. & Porchet, M., pp 168–180. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Medina, P., Smagghe, G., Budia, F., Tirry, L. & Vinuela, E. (2003). Toxicity and absorption of azadirachtin, diflubenzuron, pyriproxyfen, and tebufenozide after topical application in predatory larvae of Chrysoperla carnea (Neuroptera: Chrysopidae). Environmental Entomology, 32, 196–203.CrossRefGoogle Scholar
Minakuchi, C. & Riddiford, L. M. (2006). Insect juvenile hormone action as a potential target of pest management. Journal of Pesticide Science, 31, 77–84.CrossRefGoogle Scholar
Mommaerts, V., Sterk, G. & Smagghe, G. (2006). Bumblebees can be used in combination with juvenile hormone analogues and ecdysone agonists. Ecotoxicology, 15, 513–521.CrossRefGoogle ScholarPubMed
Monger, D. J., Lim, W. A., Kezdy, F. J. & Law, J. H. (1982). Compactin inhibits insect HMG-CoA reductase and juvenile hormone biosynthesis. Biochemical and Biophysical Research Communications, 105, 1374–1380.CrossRefGoogle ScholarPubMed
Nakagawa, Y. (2005). Nonsteroidal ecdysone agonists. Vitamins and Hormones, 73, 131–173.CrossRefGoogle ScholarPubMed
Neves, C. A., Gitirana, L. B. & Serrao, J. E. (2003). Ultrastructure of the midgut endocrine cells in Melipona quadrifasciata anthidioides (Hymenoptera, Apidae). Brazilian Journal of Biology, 63, 683–690.CrossRefGoogle Scholar
Nijhout, H. F. (ed.) (1994). Insect Hormones. Princeton, NJ: Princeton University Press.Google Scholar
Nordeen, S. K., Ogden, C. A., Taraseviciene, L. & Lieberman, B. A. (1998). Extreme position dependence of a canonical hormone response element. Molecular Endocrinology, 12, 891–898.CrossRefGoogle ScholarPubMed
Palli, S. R. & Cusson, M. (2007). Future insecticides targeting genes involved in the regulation of molting and metamorphosis. In Insecticides Design Using Advanced Technologies, eds. Ishaaya, I., Nauen, R. & Horowitz, A. R., pp. 105–134. Berlin, Germany: Springer-Verlag.CrossRefGoogle Scholar
Palli, S. R., Tice, C. M., Margam, V. M. & Clark, A. M. (2005). Biochemical mode of action and differential activity of new ecdysone agonists against mosquitoes and moths. Archives of Insect Biochemistry and Physiology, 58, 234–242.CrossRefGoogle ScholarPubMed
Pratt, G. E., Kuwano, E., Farnsworth, D. E. & Feyereisen, R. (1990). Structure/activity studies on 1, 5-disubstituted imidazoles as inhibitors of juvenile hormone biosynthesis in aisolated corpora allata of the cockroach Diploptera punctata. Pesticide Biochemistry and Physiology, 38, 223–230.CrossRefGoogle Scholar
Predel, R., Eckert, M. & Holman, G. M. (1999). The unique neuropeptide pattern in abdominal perisympathetic organs of insects. Annals of the New York Academy of Science, 897, 282–290.CrossRefGoogle ScholarPubMed
Predel, R., Kellner, R., Baggerman, G., Steinmetzer, T. & Schoofs, L. (2000). Identification of novel periviscerokinins from single neurohaemal release sites in insects: MS/MS fragmentation complemented by Edman degradation. European Journal of Biochemistry, 267, 3869–3873.CrossRefGoogle ScholarPubMed
Quistad, G. B., Cerf, D. C., Schooley, D. A. & Staal, G. B. (1981). Fluoromevalonate acts as an inhibitor of insect juvenile hormone biosynthesis. Nature, 289, 176– 177.CrossRefGoogle Scholar
Quistad, G. B., Cerf, D. C., Kramer, S. J., Bergot, B. J. & Schooley, D. A. (1985). Design of novel insect anti juvenile hormones: allylic alcohol derivatives. Journal of Agricultural Food Chemistry, 33, 47–50.CrossRefGoogle Scholar
Rachinsky, A., Mizoguchi, A., Srinivasan, A. & Ramaswamy, S. B. (2006). Allatotropin-like peptide in Heliothis virescens: tissue localization and quantification. Archives of Insect Biochemistry and Physiology, 62, 11–25.CrossRefGoogle ScholarPubMed
Raikhel, A. S., Brown, M. B. & Belles, X. (2005). Hormonal control of reproductive processes. In Comprehensive Molecular Insect Science, vol. 3, eds. Gilbert, L. I., Iatrou, K. & Gill, S. S., pp. 433–491. Amsterdam, Netherlands: Elsevier.CrossRefGoogle Scholar
Retnakaran, A., Smith, , Tomkins, W. L, W. al. (1997). Effect of RH-5992, a nonsteroidal ecdysone agonist, on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): laboratory, greenhouse and ground spray trials. Canadian Entomologist, 129, 871–885.CrossRefGoogle Scholar
Retnakaran, A., Gelbic, I., Sundaram, al. (2001). Mode of action of the ecdysone agonist tebufenozide (RH-5992), and an exclusion mechanism to explain resistance to it. Pest Management Science, 57, 951–957.CrossRefGoogle Scholar
Retnakaran, A., Krell, P., Feng, Q. & Arif, B. (2003). Ecdysone agonists: mechanism and importance in controlling insect pests of agriculture and forestry. Archives of Insect Biochemistry and Physiology, 54, 187–199.CrossRefGoogle ScholarPubMed
Riddiford, L. M., Hiruma, K., Zhou, X. & Nelson, C.A. (2003). Insights into the molecular basis of the hormonal control of molting and metamorphosis from Manduca sexta and Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 33, 1327–1338.CrossRefGoogle ScholarPubMed
Robbins, W. E., Kaplanis, J. N., Thompson, M. J., Shortino, T. J. & Joyner, S. O. (1970). Ecdysones and synthetic analogs: molting hormone activity and inhibitive effects on insect growth, metamorphosis and reproduction. Steroids, 16, 105–125.CrossRefGoogle ScholarPubMed
Sáenz-de-Cabezón Irigaray, F.-J., Marco, V., Zalom, F. G. & Pérez-Moreno, I. (2005). Effects of methoxyfenozide on Lobesia botrana Den & Schiff (Lepidoptera: Tortricidae) egg, larval and adult stages. Pest Management Science, 61, 1133–1137.CrossRefGoogle ScholarPubMed
Sakai, T., Satake, H., Minakata, H. & Takeda, M. (2004). Characterization of crustacean cardioactive peptide as a novel insect midgut factor: isolation, localization, and stimulation of alpha-amylase activity and gut contraction. Endocrinology, 145, 5671–5678.CrossRefGoogle ScholarPubMed
Sato, Y., Oguchi, M., Menjo, al. (1993). Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proceedings of the National Academy of Sciences of the USA, 90, 3251–3255.CrossRefGoogle ScholarPubMed
Sauphanor, B. & Bouvier, J. C. (1995). Cross-resistance between benzoylureas and benzoylhydrazines in the coddling moth, Cydia pomonella L. Pesticide Science, 45, 369–375.CrossRefGoogle Scholar
Sen, S. E., Trobaugh, C., Béliveau, C., Richard, T. & Cusson, M. (2007). Cloning, expression and characterization of a dipteran farnesyl diphosphate synthase. Insect Biochemistry and Molecular Biology, 37, 1198–1206.CrossRefGoogle ScholarPubMed
Shinoda, T. & Itoyama, K. (2003). Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proceedings of the National Academy of Science of the USA, 100, 11986–11991.CrossRefGoogle ScholarPubMed
Sláma, K, Romaňuk, M. & Šorm, F. (1974). Insect Hormones and Bioanalogues. New York: Springer-Verlag.CrossRefGoogle Scholar
Smagghe, G., Carton, B., Decombel, L. & Tirry, L. (2001). Significance of absorption, oxidation, and binding to toxicity of four ecdysone agonists in multi-resistant cotton leafworm. Archives of Insect Biochemistry and Physiology, 46, 127–139.CrossRefGoogle ScholarPubMed
Stanley, D. (2006). Prostaglandins and other eicosanoids in insects: biological significance. Annual Review of Entomology, 51, 25–44.CrossRefGoogle ScholarPubMed
Stay, B. & Tobe, S. (2007). The role of allatostatins in juvenile hormone synthesis in insects and crustaceans. Annual Review of Entomology, 52, 277–299.CrossRefGoogle ScholarPubMed
Sundaram, K. M. S., Nott, R. & Curry, J. (1996). Deposition, persistence and fate of tebufenozide (RH-5992) in some terrestrial and aquatic components of a boreal forest environment after aerial application of mimic. Journal of Environmental Science, Health B, 31, 699–750.CrossRefGoogle Scholar
Sundaram, M., Palli, S. R., Ishaaya, I., Krell, P. J. & Retnakaran, A. (1998). Toxicity of ecdysone agonists correlates with the induction of CHR3. Pesticide Biochemistry and Physiology, 62, 201–208.CrossRefGoogle Scholar
Truman, J. W. & Copenhaver, P. F. (1989). The larval eclosion hormone neurones in Manduca sexta: identification of the brain-proctodeal neurosecretory system. Journal of Experimental Biology, 147, 457–470.Google Scholar
Wearing, C. H. (1998). Cross-resistance between azino-phosmethyl and tebufenozide in the greenheaded leaf roller, Planotortrix octo. Pesticide Science, 54, 203–211.3.0.CO;2-J>CrossRefGoogle Scholar
Williams, C. M. (1956). The juvenile hormone of insects. Nature, 178, 212–213.CrossRefGoogle Scholar
Williams, C. M. (1967). Third-generation pesticides. Scientific American, 217, 13–17.CrossRefGoogle ScholarPubMed
Žitňan, D. & Adams, M. E. (2005). Neuroendocrine regulation of insect ecdysis. In Comprehensive Molecular Insect Science, vol. 3, eds. Gilbert, L. I., Iatrou, K. & Gill, S. S, pp. 1–60. Amsterdam, Netherlands: Elsevier.Google Scholar
Žitňan, D., Žitňanová, I., Spalovská, al. (2003). Conservation of ecdysis-triggering hormone signalling in insects. Journal of Experimental Biology, 206, 1275– 1289.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats