We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Reisner, Y, Kapoor, N, Kirkpatrick, D, et al.Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood. 1983;61(2):341–8.Google ScholarPubMed
2
Friedrich, W, Hönig, M. HLA-haploidentical donor transplantation in severe combined immunodeficiency. Immunol Allergy Clin North Am. 2010;30(1):31–44.CrossRefGoogle ScholarPubMed
3
Martelli, MF, Aversa, F, Bachar-Lustig, E, et al.Transplants across human leukocyte antigen barriers. Semin Hematol. 2002;39(1):48–56.CrossRefGoogle ScholarPubMed
4
Bachar-Lusting, E, Rachamim, N, Li, HW, et al.Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med1995;1:1268–73.Google Scholar
5
Rachamin, N, Gan, J, Segall, H, Krauthgamer, R, et al.Tolerance induction by “megadose” hematopoietic transplants: donor-type human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation. 1998;65:1386–93.Google Scholar
6
Gur, H, Krauthgamer, R, Berrebi, A, et al.Tolerance induction by megadose hematopoietic progenitor cells: expansion of veto cells by short-term culture of purified human CD34(+) cells. Blood. 2002;99:4174–81.CrossRefGoogle ScholarPubMed
7
Gur, H, Krauthgamer, R, Bachar-Lustig, E, et al.Immune regulatory activity of CD34+ progenitor cells: evidence for a deletion-based mechanism mediated by TNF-alpha. Blood. 2005;105(6):2585–93.CrossRefGoogle ScholarPubMed
8
Aversa, F, Tabilio, A, Terenzi, A, et al.Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood. 1994;84:3948–55.Google ScholarPubMed
9
Aversa, F, Tabilio, A, Velardi, A, et al.Treatment of high risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93.CrossRefGoogle ScholarPubMed
10
Aversa, F, Terenzi, A, Tabilio, A, et al.Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23(15):3447–54.CrossRefGoogle ScholarPubMed
11
Aversa, F, Martelli, MF, Velardi, A. Haploidentical hematopoietic stem cell transplantation with a megadose T-cell-depleted graft: harnessing natural and adaptive immunity. Semin Oncol. 2012;39(6):643–52.CrossRefGoogle ScholarPubMed
12
Ruggeri, L, Capanni, M, Urbani, E, et al.Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–2100.CrossRefGoogle ScholarPubMed
13
Ruggeri, L, Aversa, F, Martelli, MF, Velardi, A. Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self. Immunol Rev. 2006;214:202–18.CrossRefGoogle ScholarPubMed
14
Velardi, A, Ruggeri, L, Mancusi, A, Aversa, F, Christiansen, FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol. 2009;21(5):525–30.CrossRefGoogle ScholarPubMed
15
Ciceri, F, Labopin, M, Aversa, F, et al.Acute Leukemia Working Party (ALWP) of European Blood and Marrow Transplant (EBMT) Group. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112(9):3574–81.CrossRefGoogle Scholar
Moretta, L, Locatelli, F, Pende, D, Marcenaro, E, Mingari, MC, Moretta, A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood. 2011;117(3):764–71.CrossRefGoogle ScholarPubMed
18
Yawata, M, Yawata, N, Draghi, M, Little, AM, Parteniou, F, Parham, P. Roles for HLA and KIR polymorphisms in natural killer cell repertoire selection and modulation of effector function. J Exp Med. 2006;203:633–45.CrossRefGoogle ScholarPubMed
19
Leung, W, Iyengar, R, Turner, V, et al.Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–50.CrossRefGoogle ScholarPubMed
20
Haas, P, Loiseau, P, Tamouza, R, et al.NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2011;117(3):1021–9.CrossRefGoogle ScholarPubMed
21
Perruccio, K, Tosti, A, Burchielli, E, et al.Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106(13):4397–406.CrossRefGoogle ScholarPubMed
22
Feuchtinger, T, Opherk, K, Bethge, WA, Topp, MS, Schuster, FR, Weissinger, EMet al.Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):4360–7.CrossRefGoogle ScholarPubMed
23
Leen, AM, Christin, A, Myers, GD, et al.Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein–Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):4283–92.CrossRefGoogle Scholar
24
Comoli, P, Schilham, MW, Basso, S, et al.T-cell lines specific for peptides of adenovirus hexon protein and devoid of alloreactivity against recipient cells can be obtained from HLA-haploidentical donors. J Immunother. 2008;31(6):529–36.CrossRefGoogle ScholarPubMed
25
Comoli, P, Basso, S, Zecca, M, et al.Preemptive Therapy of EBV-related lymphoproliferative disease after pediatric haploidentical stem cell transplantation. Am J Transplant. 2007;7(6):1648–55.CrossRefGoogle ScholarPubMed
26
Perruccio, K, Topini, F, Tosti, A, et al.Photodynamic purging of alloreactive T cells for adoptive immunotherapy after haploidentical stem cell transplantation. Blood Cells Mol Dis. 2008; 40(1):76–83.CrossRefGoogle ScholarPubMed
27
Mielke, S, Nunes, R, Rezvani, K, et al.A clinical-scale selective allodepletion approach for the treatment of HLA-mismatched and matched donor-recipient pairs using expanded T lymphocytes as antigen-presenting cells and a TH9402-based photodepletion technique. Blood. 2008;111(8):4392–402.CrossRefGoogle Scholar
28
Roy, DC, Guerin, M, Boumedine, RS, et al.Reduction in incidence of severe infections by transplantation of high doses of haploidentical T cells selectively depleted of alloreactive units. ASH Annual Meeting Abstracts. 2011;118(21):3020.Google Scholar
29
Marktel, S, Magnani, Z, Ciceri, F, et al.Immunologic potential of donor lymphocytes expressing a suicide gene for early immune reconstitution after hematopoietic T-cell-depleted stem cell transplantation. Blood. 2003;101(4):1290–8.CrossRefGoogle ScholarPubMed
30
Ciceri, F, Bonini, C, Gallo-Stampino, C, Bordignon, C. Modulation of GvHD by suicide-gene transduced donor T lymphocytes: clinical applications in mismatched transplantation. Cytotherapy. 2005;7(2):144–9.CrossRefGoogle ScholarPubMed
31
Ciceri, F, Bonini, C, Stanghellini, MTL, et al.Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study. Lancet Oncol2009; 10(5):489–500.CrossRefGoogle ScholarPubMed
32
Vago, L, Oliveira, G, Bondanza, A. T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood. 2012;120(9):1820–30.CrossRefGoogle ScholarPubMed
33
Bader, P, Soerensen, J, Jarisch, A, et al.Rapid immune recovery and low TRM in haploidentical stem cell transplantation in children and adolescence using CD3/CD19 depleted stem cells. Best Pract Res Clin Haematol. 2011;24(3):331–7.CrossRefGoogle ScholarPubMed
34
Bethge, WA, Haegele, M, Faul, C, et al.Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis. 2008;40(1):13–9.CrossRefGoogle ScholarPubMed
35
Chaleff, S, Otto, M, Barfield, RC, et al.A large-scale method for the selective depletion of alphabeta T lymphocytes from PBSC for allogeneic transplantation. Cytotherapy. 2007;9(8):746–54.CrossRefGoogle ScholarPubMed
36
Handgretinger, R.New approaches to graft engineering for haploidentical bone marrow transplantation. Semin Oncol. 2012;39(6):664–73.CrossRefGoogle ScholarPubMed
37
Handgretinger, R, Lang, P, Feuchtinger, TF, et al.Transplantation of TcR {alpha}{beta}/CD19 depleted stem cells from haploidentical donors: robust engraftment and rapid immune reconstitution in children with high risk leukemia. ASH Annual Meeting Abstracts. 2011;118:1005.Google Scholar
38
Carding, SR, Egan, PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol. 2002;2(5):336–45.CrossRefGoogle ScholarPubMed
39
Locatelli, F, Bauquet, A, Palumbo, G, Moretta, F, Bertaina, A. Negative depletion of α/β+ T cells and of CD19+ B lymphocytes: a novel frontier to optimize the effect of innate immunity in HLA-mismatched hematopoietic stem cell transplantation. Immunol Lett2013;155(1–2):21–3.CrossRefGoogle ScholarPubMed
40
Bertaina, A, Merli, P, Rutella, S, et al.HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disordersBlood. 2014;124(5):822–6.CrossRefGoogle Scholar
41
Prezioso, L, Bonomini, S, Lambertini, C, et al.Haploidentical stem cell transplantation after negative depletion of T cells expressing the αβ chain of the T-cell receptor (TCR) for adults with hematological malignancies. Blood2013;122:4609 (Abstract).Google Scholar
42
Aversa, F. Ex vivo TCRα/β/CD19 T and B cell depletion in HSCT for treatment of adult patients with hematological disease. Milteni Symposium on Cellular therapy: Facts, developments, future visions, EBMT meeting, Milan 2014 (Abstract).
43
Hoffmann, P, Ermann, J, Edinger, M, Fathman, CG, Strober, S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196(3):389–99.CrossRefGoogle ScholarPubMed
44
Nguyen, VH, Shashidhar, S, Chang, DS, et al.The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation. Blood. 2008;111(2):945–53.CrossRefGoogle ScholarPubMed
45
Edinger, M, Hoffmann, P, Ermann, J, et al.CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9(9):1144–50.CrossRefGoogle ScholarPubMed
46
Di Ianni, M, Del Papa, B, Cecchini, D, et al.Immunomagnetic isolation of CD4+CD25+FoxP3+ natural T regulatory lymphocytes for clinical applications. Clin Exp Immunol. 2009;156:246–53.CrossRefGoogle Scholar
47
Di Ianni, M, Falzetti, F, Carotti, A, et al.Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.CrossRefGoogle ScholarPubMed
48
Trenado, A, Charlotte, F, Fisson, S, et al.Recipient-type specific CD4+CD25+ regulatory T cells favor immune reconstitution and control graft-versus-host disease while maintaining graft-versus-leukemia. J Clin Invest. 2003;112(11):1688–96.CrossRefGoogle ScholarPubMed
49
Martelli, MF, Di Ianni, M, Ruggeri, L, et al.A. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110(1):433–40.Google Scholar
50
Martelli, MF, Di Ianni, M, Ruggeri, L, et al.“Designed” grafts for HLA-haploidentical stem cell transplantation. Blood2014;123(7):967–73.CrossRefGoogle ScholarPubMed
51
Anasetti, C, Beatty, PG, Storb, R, et al.Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29(2):79–91. PubMed PMID: 2249952.CrossRefGoogle ScholarPubMed
52
Anasetti, C, Amos, D, Beatty, PG, et al.Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320(4):197–204. PubMed PMID: 2643045.CrossRefGoogle ScholarPubMed
53
Beatty, PG, Clift, RA,. Mickelson, EM, et al.Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med. 1985;313(13):765–771.CrossRefGoogle ScholarPubMed
54
Powles, RL, Morgenstern, GR, Kay, HE, et al.Mismatched family donors for bone-marrow transplantation as treatment for acute leukaemia. Lancet. 1983;1(8325):612–615.CrossRefGoogle ScholarPubMed
55
Passweg, JR, Baldomero, H, Gratwohl, A, et al. and for the European Group for Blood and Marrow Transplantation (EBMT). The EBMT activity survey: 1990–2010. Bone Marrow Transplant. 2012;47:906–23.CrossRefGoogle ScholarPubMed
56
Lu, D-P, Dong, L, Wu, T, et al.Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107(8):3065–73.CrossRefGoogle ScholarPubMed
57
Ji, S-Q, Chen, H-R, Yan, H-M, et al.Anti-CD25 monoclonal antibody (basiliximab) for prevention of graft-versus-host disease after haploidentical bone marrow transplantation for hematological malignancies. Bone Marrow Transplant. 2005;36(4):349–54.CrossRefGoogle ScholarPubMed
58
Di Bartolomeo, P, Santarone, S, De Angelis, G, et al.Unmanipulated bone marrow transplantation from haploidentical related donors for patients with high risk hematologic malignancies. Blood2010;116:Abstract 2350.Google Scholar
59
Sanz, J, Boluda, JCH, Martín, C, et al.Single-unit umbilical cord blood transplantation from unrelated donors in patients with hematological malignancy using busulfan, thiotepa, fludarabine and ATG as myeloablative conditioning regimen. Bone Marrow Transplantation. 2012;47(10):1287–93.CrossRefGoogle ScholarPubMed
60
Noviello, M, Forcina, A, Lupo-Stanghellini, MT, et al.Early reconstitution of T-cell immunity to CMV after HLA-haploidentical hematopoietic stem cell transplantation is a strong surrogate biomarker for lower non-relapse mortality rates. ASH Annual Meeting Abstracts2012;120:4191Google Scholar
61
Santos, GW, Owens, AH. Production of graft-versus-host disease in the rat and its treatment with cytotoxic agents. Nature. 1966;210(5032):139–40.CrossRefGoogle ScholarPubMed
62
Luznik, L, O’Donnell, PV, Symons, HJ, et al.HLA-haploidentical bone marrow ransplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50.CrossRefGoogle Scholar
63
McCurdy, SR, Kanakry, JA, Showel, MM, et al.Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125(19):3024–31.CrossRefGoogle ScholarPubMed
64
Raiola, AM, Dominietto, A, Ghiso, A, et al.Unmanipulated haploidentical bone marrow transplant and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant. 2013;19;117–22.CrossRefGoogle ScholarPubMed
65
Castagna, L, Crocchiolo, R, Furst, S, et al.Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant. 2014;20:724–9.CrossRefGoogle ScholarPubMed
66
Solomon, S, Sizemore, C, Zhang, Z, et al.TBI-based myeloablative haploidentical stem cell transplantation is a safe and effective alternative to unrelated donor transplantation in patients without matched sibling donors. Blood. 2014;124:426(Abstract).Google Scholar
67
Grosso, D, Gaballa, S, Alpdogan, O, et al.A two-step approach to myeloablative haploidentical transplantation: low nonrelapse mortality and high survival confirmed in patients with earlier stage disease. Biol Blood Marrrow Transplant. 2015;21(4):646–52.CrossRefGoogle ScholarPubMed
68
Halter, J, Kodera, Y, Urbano-Ispizua, A, et al. for the European Group for Blood and Marrow Transplantation (EBMT) Activity Survey Office. Severe events in donors after allogeneic hematopoietic stem cell donation. Haematologica. 2009;94:94–101.CrossRefGoogle ScholarPubMed
69
Kanakry, CG, Tsai, HL, Bolan˜os-Meade, J, et al.Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood. 2014;124:3817–27.CrossRefGoogle ScholarPubMed
70
Bradstock, KF, Bilmon, I, Kwan, J, et al.Single-agent high-dose cyclophosphamide for graft-versus-host disease prophylaxis in human leukocyte antigen matched reduced-intensity peripheral blood stem cell transplantation results in an unacceptably high rate of severe acute graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21:934–53.CrossRefGoogle Scholar
71
Kanakry, CG, O’Donnell, PV, Furlong, T, et al.Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J Clin Oncol. 2014;32(31):3497–505.CrossRefGoogle ScholarPubMed
72
Holtick, U, Chemnitz, JM, Shimabukuro-Vornhagen, A, et al.OCTET-CY: a phase II study to investigate the efficacy of post-transplant cyclophosphamide as sole graft-versus-host prophylaxis after allogeneic peripheral blood stem cell transplantation. Eur J Haematol. 2016;96(1):27–35.CrossRefGoogle ScholarPubMed
73
Bashey, A, Zhang, X, Sizemore, CA., et al.T-cell–replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013;31:1310–16.CrossRefGoogle ScholarPubMed
74
Raiola, AM, Dominietto, A, di Grazia, C, et al.Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol Blood Marrow Transplant. 2014;20:1573–9.CrossRefGoogle ScholarPubMed
75
Ciurea, SO, Zhang, MJ, Bacigalupo, AA, et al.Haploidentical transplant with post-transplant cyclophosphamide versus matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40.CrossRefGoogle Scholar
76
Kekre, N, Antin, J. Hemopoietic stem cell transplant sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood. 2014;124:334–9.CrossRefGoogle Scholar
References
1
Broxmeyer, HE, Gordon, GW, Hangoc G, G, et al.Human umbilial cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA1989;86.10: 3828–32.CrossRefGoogle ScholarPubMed
2
Gluckman, E, Broxmeyer, HE, Auerbach, AD, et al.Hematopoietic reconstitution in a patient with Fanconi anemia by means of umbilical-cord blood from an HLA-identical sibling. N Eng J Med1989;321.17: 1174–78.CrossRefGoogle Scholar
3
Auerbach, AD, Liu, O, Ghosh, R, et al.Prenatal identification of potential donors for umbilical cord blood transplantation for Fanconi anemia. Transfusion1990;30.8: 682–7.CrossRefGoogle ScholarPubMed
4
Rubinstein, P, Dobrila, L,Rosenfield, RE, et al.Processing and cryopreservation of placental/umbilical cord blood for unrelated bone marrow reconstitution. Proc Natl Acad Sci USA1995;92: 10119–22.CrossRefGoogle ScholarPubMed
5
Kurtzberg, J, Laughlin, M, Graham, ML, et al.Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. New Engl J Med1996;335.3: 157–66.CrossRefGoogle ScholarPubMed
6
Wagner, JE, Barker, JN, Defor, TE, et al.Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases. Blood2002;100: 1611–8.Google ScholarPubMed
7
Rocha, V, Cornish, J, Sievers, E. Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood2010;97.10: 2962–71.Google ScholarPubMed
8
Eapen, M, Rubinstein, P, Zhang, MJ, et al.Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukemia: a comparison study . Lancet2007;369.9577: 1947–54.CrossRefGoogle ScholarPubMed
9
Prasad, VK, Mendizabal, A, Parikh, SH, et al.Unrelated donor umbilical cord blood transplantation for inherited metabolic disorders in 159 pediatric patients from a single center: influence of cellular composisiton of the graft on transplantation outcomes. Blood2008;112.7: 2979–89.CrossRefGoogle ScholarPubMed
10
Wagner, JE, Eapen, M, Carter, SL, et al.No survival advantage after double vs single cord blood transplantation in children with hematologic malignancy. Blood2012;120.21: 359a.Google Scholar
11
Laughlin, MJ, Barker, J, Bambach, B, et al.Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med2001;344.24: 1815–22.CrossRefGoogle ScholarPubMed
12
Ooi, J, Takahashi, S, Tomonari, A, et al.Unrelated cord blood transplantation after myeloablative conditioning in adults with acute myelogeneous leukemia. Biol Blood Marrow Transplant2008;14.12: 1341–47.Google Scholar
13
Mori, T, Tanaka, S, Tsukada, N, et al.Prospective multicenter study of single-unit cord blood transplantation with myeloablative conditioning for adult patients with high-risk malignancies. Biol Blood Marrow Transplant2013;19: 486–91.CrossRefGoogle Scholar
14
Sanz, J, Boluda, JC, Martin, C, et al.Single-unit umbilical cord blood transplantation from unrelated donors in patients with hematologic malignancy using busulfan, thiotepa, fludarabine, and ATG as myeloablative conditioning regimen. Bone Marrow Transplant2012;47.10: 1287–93.CrossRefGoogle ScholarPubMed
15
Ballen, KK, Gluckman, E, Broxmeyer, H. Umbilical cord blood transplantation: The first 25 years and beyond. Blood2013;122.4: 491–8.CrossRefGoogle ScholarPubMed
16
Barker, JN, Weisdorf, DJ, DeFor, TE, et al.Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced intensity conditioning. Blood2003;102.5: 1915–19.CrossRefGoogle ScholarPubMed
Cutler, C, Stevenson, K, Kim, HT, et al.Double umbilical cord blood transplantation with reduced intensity conditioning and sirolimus based GVHD prophylaxis. Bone Marrow Transplant2011;46.5: 273–77.CrossRefGoogle ScholarPubMed
19
Ramirez, P, Wagner, JE, DeFor, TE, et al.Factors predicting single-unit predominance after double umbilical cord blood transplantation. Bone Marrow Transplant2012;47.6: 799–803.CrossRefGoogle ScholarPubMed
20
Verneris, MR, Brunstein, CG, Barker, J, et al.Relapse risk after umbilical cord blood transplantation: enhanced graft-versus-leukemia effect in recipients of 2 units. Blood2009;114.9: 4293–9.CrossRefGoogle ScholarPubMed
21
Labopin, M, Ruggeri, M, Gorin, NC, et al.Cost-effectiveness and clinical outcomes of double vs single cord blood transplants in adults with acute leukemia in France. Leukemia2014;99.3: 535–40.Google ScholarPubMed
22
Barker, JN, Scaradavou, A, Stevens, CE, et al.Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood2010;115.9: 1843–49.CrossRefGoogle ScholarPubMed
23
Takanashi, M, YAtsuta, K Fujiwara, et al.The impact of anti-HLA antibodies on unrelated cord blood transplantations. Blood2010;116.15: 2839–46.CrossRefGoogle ScholarPubMed
24
Cutler, C C, Kim, HT, Sun, L, et al.Donor-specific anti-HLA antibodies predict outcome in double umbilical cord blood transplantation. Blood2011;118.25: 6691–97.CrossRefGoogle ScholarPubMed
25
van Rood, JJ, Stevens, CE, Smits, J, et al.Reexposure of cord blood to noninherited maternal HLA antigens improves transplant outcomes in hematological malignancies. Proc Natl Acad Sci USA2009;106.47: 19952–7.CrossRefGoogle Scholar
26
Rocha, V, Spellman, S, Zhang, MJ, et al.Effect of HLA-matching recipients to donor noninherited maternal antigens on outcomes after mismatched umbilical cord blood transplantation for hematologic malignancy. Biol Blood Marrow Transplant2012;18.12: 1890–96.CrossRefGoogle ScholarPubMed
27
Eapen, M, Klein, JP, Sanz, GF, et al.Effect of donor-recipient matching at HLA A, B, C and DRB1 on outcomes after umbilical cord blood transplantation for leukemia and myelodysplastic syndrome: a retrospective analysis. Lancet Oncol2011;12.13: 1214–21.CrossRefGoogle ScholarPubMed
28
Garfall, A, Kim, H, Cutler, C, et al.Allele level matching at HLA-C or DRB1 is associated with improved survival after reduced intensity cord blood transplantation. Blood2012;120.21: 2010a (Abstract).Google Scholar
29
Eapen, M, Klein, JP, Ruggeri, A, et al.Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical cord blood transplantation for hematologic malignancy. Blood2014;123.1: 133–40.CrossRefGoogle ScholarPubMed
30
Garfall, A, Kim, HT,Sun, L, et al.KIR-ligand incompatibility is not associated with relapse reduction after double umbilical cord blood transplantation. Bone Marrow Transplant2013 ;48.7: 1000–2.CrossRefGoogle Scholar
31
Brunstein, CG, Wagner, JE, Weisdorf, DJ, et al.Negative effect of KIR alloreactivity in recipients of umbilical cord blood transplants depends on transplantation conditioning intensity. Blood2009;113.22: 5628–34.CrossRefGoogle Scholar
32
Willemze, R, Rogrigues, CA, Labopin, M, et al.KIR-ligand incompatibility in the graft-versus-host direction improves outcomes after umbilical cord transplantation for acute leukemia. Leukemia2009;23.3: 492–500.CrossRefGoogle ScholarPubMed
33
Smith, KM. Analysis of 402 cord blood units to assess factors influencing infused viable CD 34+ cell dose: the critical determinant of engraftment. Blood2013;122.21: 296–300.Google Scholar
34
Eapen, M, Rocha, V, Sanz, G, et al.Effect of graft source on unrelated donor hematopoietic stem-cell transplantation in adults with acute leukemia: a retrospective analysis. Lancet Oncol2010;11.7: 653–60.CrossRefGoogle ScholarPubMed
35
Brunstein, CG, Gutman, JA, Weisdorf, DJ, et al.Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood2010;116.22: 4693–9.CrossRefGoogle ScholarPubMed
36
Chen, YB, Aldridge, J, Kim, HT, et al.Reduced-intensity conditioning stem cell transplantation: comparison of double umbilical cord blood and unrelated donor grafts. Biology Blood Marrow Transplant2012;8: 805–12.Google Scholar
37
Brunstein, CG, Eapen, M, Ah, KW, et al.Reduced-intensity conditioning transplantation in acute leukemia: the effect of source of unrelated donor stem cells on outcomes. Blood2012;119.23: 5591–98.CrossRefGoogle ScholarPubMed
38
Milano, F, Gooley, T, Wood, B, et al. Cord-blood transplantation in patients with minimal residual disease. New Engl J Med 2016;375(10): 444-53.
39
Brunstein, CG, Fuchs EJ, EJ, Carter, SJ, et al.Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood2011 ;118.2: 282–88.CrossRefGoogle ScholarPubMed
40
Bautista, G, Cabreza, JR, Regidor, C, et al.Cord blood transplants supported by co-infusion of mobilized hematopoietic stem cells from a third-party donor. Bone Marrow Transplant2009;43.5: 365–73.CrossRefGoogle ScholarPubMed
41
Liu, H, Rich, ES, Godley, L, et al.Reduced-intensity conditioning with combined haploidentical and cord blood transplantation results in rapid engraftment, low GVHD, and durable remissions. Blood2011;118.24: 6438–45.CrossRefGoogle ScholarPubMed
42
Ponce, DM, Dahi, PB, Devlin, S, et al.Double-unit cord blood transplantation combined with haplo-identical CD34+ selected PBSC results in 100% CB engraftment and enhanced myeloid recovery. Blood2013;122: 298.Google Scholar
43
Frassoni, F, Gualandi, F, Podesta, M, et al.Direct intrabone transplant of unrelated cord-blood cells in acute leukemia: a phase I/II study. Lancet Oncol2008;9.9: 831–39.CrossRefGoogle ScholarPubMed
44
Brunstein, C, Barker, JN, Weisdorf, DJ, et al.Intra-BM injection to enhance engraftment after myeloablative umbilical cord blood transplantation with two partially HLA-matched units. Bone Marrow Transplant2009;43.12: 935–40.CrossRefGoogle ScholarPubMed
45
Delaney, C, Heimfeld, S, Brashem-Stein, C, et al.Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nature Med2010;16.2: 232–36.CrossRefGoogle ScholarPubMed
46
de Lima, M, McNiece, I, Robinson, SN, et al.Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med2012;367.24: 2305–15.CrossRefGoogle ScholarPubMed
47
Horwitz, ME, Chao, NJ. Rizzieri, DA, et al.Umbilical cord blood expansion with nicotinamide provides long-term mulitlineage engraftment. J Clin Invest2014;124.7: 3121–8.CrossRefGoogle ScholarPubMed
48
Montesinos P, P, Peled, T, Landau, E, et al.Stem-Ex (copper chelation based) ex vivo expanded cord blood umbilical cord blood stem cell transplantation (UCBT) accelerates engraftment and improves 100 day survival in myeloablated patients compared to a registry cohort undergoing double-unit UCBT: results of a multicenter study of 101 patients with hematologic malignancies. Blood2013;122: 295 (Abstract).Google Scholar
49
Goessling, W, Allen, RS, Guan, X, et al.Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Stem Cell2011;8.4: 445–58.Google ScholarPubMed
Popat, UR, Oran B, B, Hosing, CM, et al.Ex vivo fucosylation of cord blood accelerates neutrophil and platelet engraftment. Blood2013;122: 691–95.Google Scholar
52
Farag, SS, Srivastava, S, Messina-Graham, S, et al.In-vivo DPP-4 inhibition to enhance engraftment of single-unit cord blood transplants in adults with hematologic malignancies. Stem Cell Dev2013;22: 1007–15.CrossRefGoogle Scholar
53
Norkin, M, Lazarus, HM, Wingard, JR. Umbilical cord blood graft enhancement strategies: has the time come to move these into the clinic?Bone Marrow Transplant2013;48.7: 884–9.CrossRefGoogle ScholarPubMed
54
Sauter, C, Abboud, M, Jia, X, et al.Serious infection risk and immune recovery after double-unit cord blood transplantation without antithymocyte globulin. Biol Blood Marrow Transplant2011;17.10: 1–12.CrossRefGoogle ScholarPubMed
55
Hanley, P P, Cruz, CR, Savoldo, B, et al.Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood2009;114.9: 1958–67.CrossRefGoogle Scholar
56
Brunstein, CG, Miller, J, Cao, Q, et al.Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood2011;117.3: 1061–70.CrossRefGoogle Scholar
57
Ballen, KK, Klein, JP, Pedersen, TL, et al.Relationship of race/ethnicity and survival after single umbilical cord blood transplantation for adults and children with leukemia and myelodysplastic syndromes. Biol Blood Marrow Transplant2012;18.6: 903–12.CrossRefGoogle Scholar
58
Ballen, KK, Joffe, S, Brazauskas, R, et al.Hospital length of stay in the first 100 days after allogeneic hematopoietic cell transplantation for acute leukemia in remission: comparison among alternative graft sources. Biol Blood Marrow Transplant2014;20.11:1819–27.CrossRefGoogle ScholarPubMed
59
Deuse, T, Stubbendorff, M. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant2011;20.5: 655–67.CrossRefGoogle ScholarPubMed
60
Cui, X, Choppe, M, Zacharek, A, et al.Combination treatment of stroke with subtherapeutic doses of Simvastatin and human umbilical cord blood cells enhances vascular remodeling and improves functional outcomes. Neuroscience2012;227: 223–31.CrossRefGoogle Scholar
61
Cotten, CM, Murtha, AP, Goldberg, RN, et al.Feasibility of autologous cord blood cells for infants wtih hypoxic-ischemic encephalopathy. J Pediatr2014;164: 973–9.CrossRefGoogle Scholar
62
Barker, JN, Byam, C, Scaradavou, A. How I treat: the selection and acquisition of unrelated cord blood grafts. Blood2011;117.8: 2332–9.CrossRefGoogle ScholarPubMed
63
Ponce, DM, Zheng, J, Gonzales, AM, et al.Reduced late mortality risk contributes to similar survival after double-unit cord blood transplantation compared with related and unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant2011;17.9: 1316–26.CrossRefGoogle ScholarPubMed
64
Marks, DI, Woo, KA, Zhong, X, et al.Unrelated umbilical cord blood transplantation for adult acute lymphoid leukemia in first or second complete remission. Hematologica. 2014;99.2: 322–8.CrossRefGoogle ScholarPubMed
65
Sun, J, Allison, J, McLaughlin, C, et al.Differences in quality between privately and publicly banked umbilical cord blood units: a pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion2010;50.9: 1980–7.CrossRefGoogle ScholarPubMed
66
Jeevanantham, V, Butler, M, Saad, A, et al.Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation2012;126.5: 551–68.CrossRefGoogle ScholarPubMed
67
Haller, MJ, Wasserfall, CH, Hulme, MA, et al.Autologous umbilical cord blood infusion followed by oral docosahexaenoic acid and vitamin D supplementation for C-peptide preservation in children with Type 1 diabetes. Biol Blood Marrow Transplant2013;19.7: 1126–9.CrossRefGoogle ScholarPubMed
References
1
Lee, SJ, Klein, J, Haagenson, M, Baxter-Lowe, LA, Confer, DL, Eapen, M, et al.High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood2007;110(13):4576–83.CrossRefGoogle ScholarPubMed
2
Woolfrey, A, Klein, JP, Haagenson, M, Spellman, S, Petersdorf, E, Oudshoorn, M, et al.HLA-C antigen mismatch is associated with worse outcome in unrelated donor peripheral blood stem cell transplantation. Biol Blood Marrow Transplant2011;17(6):885–92.CrossRefGoogle ScholarPubMed
3
Gragert, L, Eapen, M, Williams, E, Freeman, J, Spellman, S, Baitty, R, et al.HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med2014;371(4):339–48.CrossRefGoogle ScholarPubMed
4
Bashey, A, Zhang, X, Sizemore, CA, Manion, K, Brown, S, Holland, HK, et al.T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-match related and unrelated donor transplantation. J Clin Oncol2013;31(10):1310–6.CrossRefGoogle Scholar
5
Brunstein, CG, Eapen, M, Ahn, KW, Appelbaum, FR, Ballen, KK, Champlin, RE, et al.Reduced-intensity conditioning transplantation in acute leukemia: the effect of source of unrelated donor stem cells on outcomes. Blood2012;119(23):5591–8.CrossRefGoogle ScholarPubMed
6
Brunstein, CG, Gutman, JA, Weisdorf, DJ, Woolfrey, AE, Defor, TE, Gooley, TA, et al.Allogeneic hematopoietic cell transplantation for hematologic malignancy: relative risks and benefits of double umbilical cord blood. Blood2010;116(22):4693–9.CrossRefGoogle ScholarPubMed
7
Eapen, M, Rubinstein, P, Zhang, MJ, Stevens, C, Kurtzberg, J, Scaradavou, A, et al.Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet2007;369(9577):1947–54.CrossRefGoogle ScholarPubMed
8
Rocha, V, Cornish, J, Sievers, EL, Filipovich, A, Locatelli, F, Peters, C, et al.Comparison of outcomes of unrelated bone marrow and umbilical cord blood transplants in children with acute leukemia. Blood2001;97(10):2962–71.CrossRefGoogle ScholarPubMed
9
Raiola, AM, Dominietto, A, di Grazia, C, Lamparelli, T, Gualandi, F, Ibatici, A, et al.Unmanipulated haploidentical transplants compared with other alternative donors and match sibling grafts. Biol Blood Marrow Transplant2014;20(10):1573–9.CrossRefGoogle Scholar
10
Anasetti, C, Beatty, PG, Storb, R, Martin, PJ, Mori, M, Sanders, JE, et al.Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol1990;29(2):79–91.CrossRefGoogle ScholarPubMed
11
Beatty, PG, Clift, RA, Mickelson, EM, Nisperos, BB, Flournoy, N, Martin, PJ, et al.Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med1985;313(13):765–71.CrossRefGoogle ScholarPubMed
12
Ash, RC, Horowitz, MM, Gale, RP, van Bekkum, DW, Casper, JT, Gordon-Smith, EC, et al.Bone marrow transplantation from related donors other than HLA-identical siblings: effect of T cell depletion. Bone Marrow Transplant1991;7(6):443–52.Google ScholarPubMed
13
Aversa, F, Terenzi, A, Tabilio, A, Falzetti, F, Carotti, A, Ballanti, S, et al.Full haplotype-mismatch hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol2005;23(15):3447–54.CrossRefGoogle Scholar
14
Martelli, MF, Di Ianni, M, Ruggeri, L, Falzetti, F, Carotti, A, Terenzi, A, et al.HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse. Blood2014;124(4):638–44.CrossRefGoogle ScholarPubMed
15
Wang, Y, Liu, DH, Liu, KY, Xu, LP, Zhang, XH, Han, W, et al.Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer2013;119(5):978–85.CrossRefGoogle Scholar
16
Rizzieri, DA, Koh, LP, Long, GD, Gasparetto, C, Sullivan, KM, Horwitz, M, et al.Partially match, nonmyeloablative allogeneic transplantation: clinical outcomes and immune reconstitution. J Clin Oncol2007;25(6):690–7.CrossRefGoogle Scholar
17
Kanda, J, Long, GD, Gasparetto, C, Horwitz, ME, Sullivan, KM, Chute, JP, et al.Reduced-intensity allogeneic transplantation using alemtuzumab from HLA-match related, unrelated, or haploidentical related donors for patients with hematologic malignancies. Biol Blood Marrow Transplant2014;20(2):257–63.CrossRefGoogle ScholarPubMed
18
Luznik, L, O’Donnell, PV, Symons, HJ, Chen, AR, Leffell, MS, Zahurak, M, et al.HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant2008;14(6):641–50.CrossRefGoogle ScholarPubMed
19
O’Donnell, PV, Luznik, L, Jones, RJ, Vogelsang, GB, Leffell, MS, Phelps, M, et al.Nonmyeloablative bone marrow transplantation from partially HLA-mismatch related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant2002;8(7):377–86.Google Scholar
20
Kanakry, CG, Ganguly, S, Zahurak, M, Bolanos-Meade, J, Thoburn, C, Perkins, B, et al.Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med2013;5(211):211ra157.CrossRefGoogle ScholarPubMed
21
Ross, D, Jones, M, Komanduri, K, Levy, RB. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol Blood Marrow Transplant2013;19(10):1430–8.CrossRefGoogle ScholarPubMed
22
Kasamon, YL, Luznik, L, Leffell, MS, Kowalski, J, Tsai, HL, Bolanos-Meade, J, et al.Nonmyeloablative HLA-haploidentical bone marrow transplantation with high-dose posttransplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant2010;16(4):482–9.CrossRefGoogle ScholarPubMed
23
Castagna, L, Crocchiolo, R, Furst, S, Bramanti, S, El-Cheikh, J, Sarina, B, et al.Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant2014;20(5):724–9.CrossRefGoogle ScholarPubMed
24
Raiola, AM, Dominietto, A, Ghiso, A, Di Grazia, C, Lamparelli, T, Gualandi, F, et al.Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant2013;19(1):117–22.CrossRefGoogle ScholarPubMed
25
Raj, K, Pagliuca, A, Bradstock, K, Noriega, V, Potter, V, Streetly, M, et al.Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol Blood Marrow Transplant2014;20(6):890–5.CrossRefGoogle ScholarPubMed
26
Solomon, SR, Sizemore, CA, Sanacore, M, Zhang, X, Brown, S, Holland, HK, et al.Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol Blood Marrow Transplant2012;18(12):1859–66.CrossRefGoogle ScholarPubMed
27
Ciurea, SO, Mulanovich, V, Saliba, RM, Bayraktar, UD, Jiang, Y, Bassett, R, et al.Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant2012;18(12):1835–44.CrossRefGoogle Scholar
28
Wagner, JE, Eapen, M, Carter, SL, Haut, PR, Peres, E, Schultz, KR, et al.No survival advantage after double umbilical cord blood (UCB) compared to single UCB transplant in children with hematological malignancy: results of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0501) Randomized Trial. ASH Annual Meeting Abstracts2012;120(21):359.Google Scholar
29
Hwang, WY, Samuel, M, Tan, D, Koh, LP, Lim, W, Linn, YC. A meta-analysis of unrelated donor umbilical cord blood transplantation versus unrelated donor bone marrow transplantation in adult and pediatric patients. Biol Blood Marrow Transplant2007;13(4):444–53.CrossRefGoogle ScholarPubMed
30
Eapen, M, Rocha, V, Sanz, G, Scaradavou, A, Zhang, MJ, Arcese, W, et al.Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: a retrospective analysis. Lancet Oncol2010;11(7):653–60.Google ScholarPubMed
31
Rocha, V, Labopin, M, Ruggeri, A, Blaise, D, Rio, B, Cornelissen, JJ, et al.Outcomes after double cord blood transplantation compared to single cord blood transplantation in adults with acute leukemia given a reduced intensity conditioning regimen. ASH Annual Meeting Abstracts2012;120(21):232.Google Scholar
32
Lindemans, CA, Chiesa, R, Amrolia, PJ, Rao, K, Nikolajeva, O, de Wildt, A, et al.Impact of thymoglobulin prior to pediatric unrelated umbilical cord blood transplantation on immune reconstitution and clinical outcome. Blood2014;123(1):126–32.CrossRefGoogle ScholarPubMed
33
Brunstein, CG, Barker, JN, Weisdorf, DJ, DeFor, TE, Miller, JS, Blazar, BR, et al.Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood2007;110(8):3064–70.CrossRefGoogle ScholarPubMed
34
Brunstein, CG, Fuchs, EJ, Carter, SL, Karanes, C, Costa, LJ, Wu, J, et al.Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatch related bone marrow or unrelated double umbilical cord blood grafts. Blood2011;118(2):282–8.CrossRefGoogle ScholarPubMed
Jacobson, CA, Turki, AT, McDonough, SM, Stevenson, KE, Kim, HT, Kao, G, et al.Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant2012;18(4):565–74.CrossRefGoogle ScholarPubMed
37
Ruggeri, A, Peffault de Latour, R, Carmagnat, M, Clave, E, Douay, C, Larghero, J, et al.Outcomes, infections, and immune reconstitution after double cord blood transplantation in patients with high-risk hematological diseases. Transpl Infect Dis2011;13(5):456–65.CrossRefGoogle ScholarPubMed
38
Klein, AK, Patel, DD, Gooding, ME, Sempowski, GD, Chen, BJ, Liu, C, et al.T-cell recovery in adults and children following umbilical cord blood transplantation. Biol Blood Marrow Transplant2001;7(8):454–66.CrossRefGoogle ScholarPubMed
39
Komanduri, KV, St John, LS, de Lima, M, McMannis, J, Rosinski, S, McNiece, I, et al.Delayed immune reconstitution after cord blood transplantation is characterized by impaired thymopoiesis and late memory T-cell skewing. Blood2007;110(13):4543–51.CrossRefGoogle ScholarPubMed
40
Kanda, J, Chiou, LW, Szabolcs, P, Sempowski, GD, Rizzieri, DA, Long, GD, et al.Immune recovery in adult patients after myeloablative dual umbilical cord blood, match sibling, and match unrelated donor hematopoietic cell transplantation. Biol Blood Marrow Transplant2012;18(11):1664–1676 e1.CrossRefGoogle Scholar
41
Dominietto, A, Raiola, AM, Bruno, B, Pende, D, Meazza, R, Gualandi, F, et al.Fast immune recovery following unmanipulated haploidentical BMT with post-transplant high-dose cyclophosphamide as GvHD prophylaxis: a comparison with siblings, unrelated donors, cord blood (EBMT abstract). Bone Marrow Transplant2012;47:S257–S258.Google Scholar
42
El-Cheikh, J, Roberto, C, Sabine, F, Stefania, B, Barbara, S, Angela, G, et al.Comparison of umbilical cord blood and haploidentical donor grafts in adults with high risk hematologic diseases after fludarabine cyclophosphamide and TBI 2 Gy based reduced-intensity conditioning regimen stem cell transplantation. Blood2013;122(21):3288.Google Scholar
43
González-Vicent, M, Molina, B, Andión, M, Sevilla, J, Ramirez, M, Pérez, A, et al.Allogeneic hematopoietic transplantation using haploidentical donor vs. unrelated cord blood donor in pediatric patients: a single-center retrospective study. Euro J Haematol2011;87(1):46–53.CrossRefGoogle ScholarPubMed
44
Mo, XD, Zhao, XY, Liu, DH, Chen, YH, Xu, LP, Zhang, XH, et al.Umbilical cord blood transplantation and unmanipulated haploidentical hematopoietic SCT for pediatric hematologic malignancies. Bone Marrow Transplant2014;49(8):1070–5.CrossRefGoogle Scholar
45
Huang, XJ, Liu, DH, Liu, KY, Xu, LP, Chen, H, Han, W. Donor lymphocyte infusion for the treatment of leukemia relapse after HLA-mismatch/haploidentical T-cell-replete hematopoietic stem cell transplantation. Haematologica2007;92(3):414–7.CrossRefGoogle Scholar
46
Yan, CH, Liu, DH, Xu, LP, Liu, KY, Zhao, T, Wang, Y, et al.Modified donor lymphocyte infusion-associated acute graft-versus-host disease after haploidentical T-cell-replete hematopoietic stem cell transplantation: incidence and risk factors. Clin Transplant2012;26(6):868–76.CrossRefGoogle ScholarPubMed
47
Zeidan, AM, Forde, PM, Symons, H, Chen, A, Smith, BD, Pratz, K, et al.HLA-haploidentical donor lymphocyte infusions for patients with relapsed hematologic malignancies after related HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant2014;20(3):314–8.CrossRefGoogle ScholarPubMed
48
Roth, JA, Bensink, ME, O’Donnell, PV, Fuchs, EJ, Eapen, M, Ramsey, SD. Design of a cost-effectiveness analysis alongside a randomized trial of transplantation using umbilical cord blood versus HLA-haploidentical related bone marrow in advanced hematologic cancer. J Comp Eff Res2014;3(2):135–44.CrossRefGoogle ScholarPubMed