Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-11T04:28:28.806Z Has data issue: false hasContentIssue false

Section 5 - Infections after Hematopoietic Cell Transplantation: Progress?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 131 - 162
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Marr, KA. Delayed opportunistic infections in hematopoietic stem cell transplantation patients: a surmountable challenge. Hematology Am Soc Hematol Educ Program. 2012;2012:265–70.Google ScholarPubMed
Hiemenz, JW. Management of infections complicating allo-hematopoietic stem cell transplantation. Semin Hematol. 2009;46:289312.Google Scholar
Freifeld, AG, Bow, EJ, Sepkowitz, KA, Boeckh, MJ, Ito, JI, Mullen, CA, et al. Infectious Diseases Society of America. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011;52:e56–93.CrossRefGoogle Scholar
Martinho, GH, Romanelli, RM, Teixeira, GM, Macedo, AV, Chaia, JM, Nobre, V. Infectious complications associated with the use of central venous catheters in patients undergoing hematopoietic stem cell transplantation. Am J Infect Control. 2013;41:642–4.CrossRefGoogle ScholarPubMed
Averbuch, D, Cordonnier, C, Livermore, DM, Mikulska, M, Orasch, C, Viscoli, C, et al.; ECIL4, a joint venture of EBMT, EORTC, ICHS, ESGICH/ESCMID and ELN. Targeted therapy against multi-resistant bacteria in leukemic and hematopoietic stem cell transplant recipients: guidelines of the 4th European Conference on Infections in Leukemia (ECIL-4, 2011). Haematologica. 2013;98:1836–47.CrossRefGoogle ScholarPubMed
Viscoli, C, Bruzzi, P, Castagnola, E, Boni, L, Calandra, T, Gaya, H, et al. Factors associated with bacteraemia in febrile, granulocytopenic cancer patients. The International Antimicrobial Therapy Cooperative Group (IATCG) of the European Organization for Research and Treatment of Cancer (EORTC). Eur J Cancer. 1994;30A:430–7Google Scholar
Viscoli, C; EORTC International Antimicrobial Therapy Group. Management of infection in cancer patients. studies of the EORTC International Antimicrobial Therapy Group (IATG). Eur J Cancer. 2002;38(Suppl 4):S82–7.Google Scholar
Zinner, SH. Changing epidemiology of infections in patients with neutropenia and cancer: emphasis on Gram-positive and resistant bacteria. Clin Infect Dis. 1999;29:490–4.CrossRefGoogle ScholarPubMed
Wisplinghoff, H, Seifert, H, Wenzel, RP, Edmond, MB. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis. 2003;36:1103–10.CrossRefGoogle ScholarPubMed
Oliveira, AL, de Souza, M, Carvalho-Dias, VM, Ruiz, MA, Silla, L, Tanaka, PY, et al. Epidemiology of bacteremia and factors associated with multi-drug-resistant Gramnegative bacteremia in hematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2007;39:775–81.Google Scholar
Weinstock, DM, Conlon, M, Iovino, C, Aubrey, T, Gudiol, C, Riedel, E, et al. Colonization, bloodstream infection, and mortality caused by vancomycin-resistant enterococcus early after allo-hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2007;13:615–21.Google Scholar
Gudiol, C, Tubau, F, Calatayud, L, Garcia-Vidal, C, Cisnal, M, Sánchez-Ortega, I, et al. Bacteraemia due to multidrug-resistant Gram-negative bacilli in cancer patients: risk factors, antibiotic therapy and outcomes. J Antimicrob Chemother. 2011;66:657–63.CrossRefGoogle ScholarPubMed
Arnan, M, Gudiol, C, Calatayud, L, Liñares, J, Dominguez, , Batlle, M, et al. Risk factors for, and clinical relevance of, faecal extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur J Clin Microbiol Infect Dis. 2011;30:355–60.Google Scholar
Gudiol, C, Calatayud, L, Garcia-Vidal, C, Lora-Tamayo, J, Cisnal, M, Duarte, R, et al. Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother. 2010;65:333–41.CrossRefGoogle ScholarPubMed
Trecarichi, EM, Tumbarello, M, Spanu, T, Caira, M, Fianchi, L, Chiusolo, P, et al. Incidence and clinical impact of extended-spectrum-beta-lactamase (ESBL) production and fluoroquinolone resistance in bloodstream infections caused by Escherichia coli in patients with hematological malignancies. J Infect. 2009;58:299307.CrossRefGoogle ScholarPubMed
Trecarichi, EM, Tumbarello, M, Caira, M, Candoni, A, Cattaneo, C, Pastore, D, et al. Multidrug resistant Pseudomonas aeruginosa bloodstream infection in adult patients with hematologic malignancies. Haematologica. 2011; 96:e1–3CrossRefGoogle ScholarPubMed
Satlin, MJ, Jenkins, SG, Walsh, TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2014;58:1274–83.CrossRefGoogle ScholarPubMed
Busca, A, Cavecchia, I, Locatelli, F, D’Ardia, S, De Rosa, FG, Marmont, F, et al. Blood stream infections after allo- stem cell transplantation: a single-center experience with the use of levofloxacin prophylaxis. Transpl Infect Dis. 2012;14:40–8.CrossRefGoogle Scholar
Mikulska, M, Del Bono, V, Bruzzi, P, Raiola, AM, Gualandi, F, Van Lint, MT, et al. Mortality after bloodstream infections in allo-haematopoietic stem cell transplant (HSCT) recipients. Infection. 2012;40:271–8.CrossRefGoogle Scholar
Mendes, ET, Dulley, F, Basso, M, Batista, MV, Coracin, F, Guimarães, T, et al. Healthcare-associated infection in hematopoietic stem cell transplantation patients: risk factors and impact on outcome. Int J Infect Dis. 2012;16:e424–8.Google Scholar
Hong, J, Moon, SM, Ahn, HK, Sym, SJ, Park, YS, Park, J, et al. Comparison of characteristics of bacterial bloodstream infection between adult patients with allo- and auto- hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19:994–9.CrossRefGoogle Scholar
Srinivasan, A, Wang, C, Srivastava, DK, Burnette, K, Shenep, JL, Leung, W, et al. Timeline, epidemiology, and risk factors for bacterial, fungal, and viral infections in children and adolescents after allo- hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19:94101.Google Scholar
Kim, SH, Kee, SY, Lee, DG, Choi, SM, Park, SH, Kwon, JC, et al. Infectious complications following allo- stem cell transplantation: reduced-intensity vs. myeloablative conditioning regimens. Transpl Infect Dis. 2013;15:4959.CrossRefGoogle ScholarPubMed
Sarashina, T, Yoshida, M, Iguchi, A, Okubo, H, Toriumi, N, Suzuki, D, et al. Risk factor analysis of bloodstream infection in pediatric patients after hematopoietic stem cell transplantation. J Pediatr Hematol Oncol. 2013;35:7680.CrossRefGoogle ScholarPubMed
Bock, AM, Cao, Q, Ferrieri, P, Young, JA, Weisdorf, DJ. Bacteremia in blood or marrow transplantation patients: clinical risk factors for infection and emerging antibiotic resistance. Biol Blood Marrow Transplant. 2013;19:102–8.CrossRefGoogle ScholarPubMed
Piñana, JL, Montesinos, P, Martino, R, Vazquez, L, Rovira, M, López, J, et al. Incidence, risk factors, and outcome of bacteremia following auto- hematopoietic stem cell transplantation in 720 adult patients. Ann Hematol. 2014;93:299307.CrossRefGoogle Scholar
Seo, SK, Xiao, K, Huang, YT, Jongwutiwes, U, Chung, D, Maloy, M, et al. Impact of peri-transplant vancomycin and fluoroquinolone administration on rates of bacteremia in allo- hematopoietic stem cell transplant (HSCT) recipients: A 12-year single institution study. J Infect. 2014 Jun 12. pii: S0163-4453(14)00163–7.Google Scholar
Gudiol, C, Bodro, M, Simonetti, A, Tubau, F, González-Barca, E, Cisnal, M, et al. Changing aetiology, clinical features, antimicrobial resistance, and outcomes of bloodstream infection in neutropenic cancer patients. Clin Microbiol Infect. 2013;19:474–9.CrossRefGoogle ScholarPubMed
Munoz-Price, LS, Poirel, L, Bonomo, RA, Schwaber, MJ, Daikos, GL, Cormican, M, et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13:785–96.Google Scholar
Tzouvelekis, LS, Markogiannakis, A, Psichogiou, M, Tassios, PT, Daikos, GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25:682707.Google Scholar
Cantón, R, Akóva, M, Carmeli, Y, Giske, CG, Glupczynski, Y, Gniadkowski, M, et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 2012;18:413–31.Google Scholar
Giani, T, D’Andrea, MM, Pecile, P, Borgianni, L, Nicoletti, P, Tonelli, F, et al. Emergence in Italy of Klebsiella pneumoniae sequence type 258 producing KPC-3 Carbapenemase. J Clin Microbiol. 2009;47:3793–4.CrossRefGoogle ScholarPubMed
Fontana, C, Favaro, M, Sarmati, L, Natoli, S, Altieri, A, Bossa, MC, et al. Emergence of KPC-producing Klebsiella pneumoniae in Italy. BMC Res Notes. 2010;3:40.Google Scholar
Gaibani, P, Ambretti, S, Berlingeri, A, Gelsomino, F, Bielli, A, Landini, MP, et al. Rapid increase of carbapenemase-producing Klebsiella pneumoniae strains in a large Italian hospital: surveillance period 1 March - 30 September 2010. Euro Surveill. 2011;16(8).CrossRefGoogle Scholar
Giani, T, Pini, B, Arena, F, Conte, V, Bracco, S, Migliavacca, R; AMCLI-CRE Survey Participants, Pantosti, A, Pagani, L, Luzzaro, F, Rossolini, GM. Epidemic diffusion of KPC carbapenemase-producing Klebsiella pneumoniae in Italy: results of the first countrywide survey, 15 May to 30 June 2011. Euro Surveill. 2013;18(22).Google Scholar
Tumbarello, M, Viale, P, Viscoli, C, Trecarichi, EM, Tumietto, F, Marchese, A, et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis. 2012;55:943–50.Google Scholar
Zarkotou, O, Pournaras, S, Tselioti, P, Dragoumanos, V, Pitiriga, V, Ranellou, K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect. 2011;17:1798–803.CrossRefGoogle ScholarPubMed
Clancy, CJ, Chen, L, Shields, RK, Zhao, Y, Cheng, S, Chavda, KD, et al. Epidemiology and molecular characterization of bacteremia due to carbapenem-resistant Klebsiella pneumoniae in transplant recipients. Am J Transplant. 2013;13:2619–33.CrossRefGoogle ScholarPubMed
Gupta, N, Limbago, BM, Patel, JB, Kallen, AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53:60–7.Google Scholar
Zuckerman, T, Benyamini, N, Sprecher, H, Fineman, R, Finkelstein, R, Rowe, JM, et al. SCT in patients with carbapenem resistant Klebsiella pneumoniae: a single center experience with oral gentamicin for the eradication of carrier state. Bone Marrow Transplant. 2011;46:1226–30.Google Scholar
Satlin, MJ, Calfee, DP, Chen, L, Fauntleroy, KA, Wilson, SJ, Jenkins, SG, et al. Emergence of carbapenem-resistant Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leuk Lymphoma. 2013;54:799806.CrossRefGoogle ScholarPubMed
Girmenia, C, Rossolini, GM, Piciocchi, A, Bertaina, A , Pisapia, G, Pastore, D, et al., for the Gruppo Italiano Trapianto Midollo Osseo (GITMO). Infections by carbapenem-resistant Klebsiella pneumoniae in stem cell transplant recipients: a nationwide retrospective survey from Italy. Bone Marrow Transplant. 2015;50:282–8.Google Scholar
Tomblyn, M, Chiller, T, Einsele, H, Gress, R, Sepkowitz, K, Storek, J, et al.; Center for International Blood and Marrow Research; National Marrow Donor Program; European Blood and Marrow Transplant Group; American Society of Blood and Marrow Transplantation; Canadian Blood and Marrow Transplant Group; Infectious Diseases Society of America; Society for Healthcare Epidemiology of America; Association of Medical Microbiology and Infectious Disease Canada; Centers for Disease Control and Prevention. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15:1143–238.Google Scholar
Engelhard, D, Akova, M, Boeckh, MJ, Freifeld, A, Sepkowitz, K, Viscoli, C, et al.; Center for International Blood and Marrow Transplant Research; National Marrow Donor ProGram; European Blood and Marrow Transplant Group; American Society of Blood and Marrow Transplantation; Canadian Blood and Marrow Transplant Group; Infectious Disease Society of America; Society for Healthcare Epidemiology of America; Association of Medical Microbiology and Infectious Diseases Canada; Centers for Disease Control and Prevention. Bacterial infection prevention after hematopoietic cell transplantation. Bone Marrow Transplant. 2009;44:467–70.Google Scholar
Girmenia, C, Viscoli, C, Piciocchi, A, Cudillo, L, Botti, S, Errico, A, et al. Management of carbapenem resistant Klebsiella pneumoniae infections in stem cell transplant recipients: an Italian multidisciplinary consensus statement. Haematologica. 2015;100:e373–6.Google Scholar
Meunier, F, Lukan, C. The First European Conference on Infections in Leukaemia – ECIL1: a current perspective. Eur J Cancer. 2008;44:2112–7.CrossRefGoogle ScholarPubMed
Kimura, S, Akahoshi, Y, Nakano, H, Ugai, T, Wada, H, Yamasaki, R, et al. Antibiotic prophylaxis in hematopoietic stem cell transplantation. A meta-analysis of randomized controlled trials. J Infect. 2014;69:1325.CrossRefGoogle ScholarPubMed
Guthrie, KA, Yong, M, Frieze, D, Corey, L, Fredricks, DN. The impact of a change in antibacterial prophylaxis from ceftazidime to levofloxacin in allo- hematopoietic cell transplantation. Bone Marrow Transplant. 2010;45:675–81.CrossRefGoogle Scholar
Eleutherakis-Papaiakovou, E, Kostis, E, Migkou, M, Christoulas, D, Terpos, E, Gavriatopoulou, M, et al. Prophylactic antibiotics for the prevention of neutropenic fever in patients undergoing auto- stem-cell transplantation: results of a single institution, randomized phase 2 trial. Am J Hematol. 2010;85:863–7.CrossRefGoogle Scholar
Gafter-Gvili, A, Paul, M, Fraser, A, Leibovici, L. Effect of quinolone prophylaxis in afebrile neutropenic patients on microbial resistance: systematic review and meta-analysis. J Antimicrob Chemother. 2007;59:522.CrossRefGoogle ScholarPubMed
Bow, EJ. Fluoroquinolones, antimicrobial resistance and neutropenic cancer patients. Curr Opin Infect Dis. 2011;24(6):545–53.CrossRefGoogle ScholarPubMed

References

Schmidt-Hieber, M, Labopin, M, Beelen, D, Volin, L, Ehninger, G, Finke, J, et al. CMV serostatus has still an important prognostic impact in de novo acute leukemia patients after allogeneic stem cell transplantation: a report from the acute leukemia working party of EBMT. Blood. 2013;122(19):3359–64.Google Scholar
Mariotti, J, Maura, F, Spina, F, Roncari, L, Dodero, A, Farina, L, et al. Impact of cytomegalovirus replication and cytomegalovirus serostatus on the outcome of patients with B cell lymphoma after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(6):885–90.Google Scholar
Nichols, WG, Corey, L, Gooley, T, Davis, C, Boeckh, M. High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis. 2002;185(3):273–82.Google Scholar
Pergam, SA, Xie, H, Sandhu, R, Pollack, M, Smith, J, Stevens-Ayers, T, et al. Efficiency and risk factors for CMV transmission in seronegative hematopoietic stem cell recipients. Biol Blood Marrow Transplant. 2012;18(9):1391–400.CrossRefGoogle ScholarPubMed
Ljungman, P, Brand, R, Hoek, J, de la Camara, R, Cordonnier, C, Einsele, H, et al. Donor CMV status influences the outcome of allogeneic stem cell transplantation; a study by the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2014;59(4):473–81.Google Scholar
Ljungman, P, Einsele, H, Frassoni, F, Niederwieser, D, Cordonnier, C. Donor CMV serological status influences the outcome of CMVseropositive recipients after unrelated donor stem cell transplantation: An EBMT Megafile analysis. Blood. 2003;102:4255–60.Google Scholar
Boeckh, M, Nichols, WG. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood. 2004;103(6):2003–8.CrossRefGoogle ScholarPubMed
Preiksaitis, JK, Hayden, RT, Tong, Y, Pang, XL, Fryer, JF, Heath, AB, et al. Are we there yet? Impact of the first international standard for cytomegalovirus DNA on the harmonization of results reported on plasma samples. Clin Infect Dis. 2016;63(5):583–9.Google Scholar
Boeckh, M, Ljungman, P. How we treat cytomegalovirus in hematopoietic cell transplant recipients. Blood. 2009;113(23):5711–9.Google Scholar
Lilleri, D, Gerna, G, Furione, M, Bernardo, ME, Giorgiani, G, Telli, S, et al. Use of a DNAemia cut-off for monitoring human cytomegalovirus infection reduces the number of pre-emptively treated children and young adults receiving haematopoietic stem cell transplantation as compared to qualitative pp65-antigenemia. Blood. 2007;110(7):2757–60.Google Scholar
Milano, F, Pergam, SA, Xie, H, Leisenring, WM, Gutman, JA, Riffkin, I, et al. Intensive strategy to prevent CMV disease in seropositive umbilical cord blood transplant recipients. Blood. 2011;118(20):5689–96.CrossRefGoogle ScholarPubMed
Reusser, P, Einsele, H, Lee, J, Volin, L, Rovira, M, Engelhard, D, et al. Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood. 2002;99(4):1159–64.CrossRefGoogle ScholarPubMed
Goodrich, JM, Mori, M, Gleaves, CA, Du Mond, C, Cays, M, Ebeling, DF, et al. Early treatment with ganciclovir to prevent cytomegalovirus disease after allogeneic bone marrow transplantation. N Engl J Med. 1991;325(23):1601–7.CrossRefGoogle ScholarPubMed
Volin, L, Barkholt, L, Nihtinen, A,Aschan, J, Uotinen, H, Hägglund, H, et al. An open-label randomised study of oral valganciclovir versus intravenous ganciclovir for pre-emptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Bone Marrow Transplantation. 2008;42(Suppl.1):S47.Google Scholar
Ljungman, P, Perez-Bercoff, L, Jonsson, J, Avetisyan, G, Sparrelid, E, Aschan, J, et al. Risk factors for the development of cytomegalovirus disease after allogeneic stem cell transplantation. Haematologica. 2006;91(1):7883.Google Scholar
Milano, F, Campbell, AP, Guthrie, KA, Kuypers, J, Englund, JA, Corey, L, et al. Human rhinovirus and coronavirus detection among allogeneic hematopoietic stem cell transplantation recipients. Blood. 2010;115(10):2088–94.Google Scholar
Winston, D, Young, J, Pullarkat, V, Papanicolaou, G, Vij, R, E V, et al. Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: a multicenter randomized, double-blind, placebo-controlled, dose-ranging study. Blood. 2008;111:5403–10.CrossRefGoogle ScholarPubMed
Marty, FM, Ljungman, P, Papanicolaou, GA, Winston, DJ, Chemaly, RF, Strasfeld, L, et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: a phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect Dis. 2011;11(4):284–92.Google Scholar
Chemaly, RF, Ullmann, AJ, Stoelben, S, Richard, MP, Bornhauser, M, Groth, C, et al. Letermovir for cytomegalovirus prophylaxis in hematopoietic-cell transplantation. N Engl J Med. 2014;370(19):1781–9.CrossRefGoogle ScholarPubMed
Marty, FM, Winston, DJ, Rowley, SD, Vance, E, Papanicolaou, GA, Mullane, KM, et al. CMX001 to prevent cytomegalovirus disease in hematopoietic-cell transplantation. N Engl J Med. 2013;369(13):1227–36.Google Scholar
Kharfan-Dabaja, M, Boeckh, M, Wilck, M, Langston, A, Chu, A, Wloch, M, et al. Phase 2 Trial of TransVax™, a Therapeutic DNA Vaccine for Control of Cytomegalovirus in Hematopoietic Cell Transplant Recipients 50th ICAAC; Boston, 2010: p. G1-1661a.Google Scholar
Chou, S. Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev Med Virol. 2008;18(4):233–46.CrossRefGoogle ScholarPubMed
Chou, SW. Cytomegalovirus drug resistance and clinical implications. Transplant Infect Dis. 2001;3 (Suppl 2):20–4.Google Scholar
Avery, RK, Marty, FM, Strasfeld, L, Lee, I, Arrieta, A, Chou, S, et al. Oral maribavir for treatment of refractory or resistant cytomegalovirus infections in transplant recipients. Transplant Infectious Dis. 2010;12(6):489–96.Google Scholar
Avery, RK, Mossad, SB, Poggio, E, Lard, M, Budev, M, Bolwell, B, et al. Utility of leflunomide in the treatment of complex cytomegalovirus syndromes. Transplantation. 2010;90(4):419–26.CrossRefGoogle ScholarPubMed
Avery, RK, Bolwell, BJ, Yen-Lieberman, B, Lurain, N, Waldman, WJ, Longworth, DL, et al. Use of leflunomide in an allogeneic bone marrow transplant recipient with refractory cytomegalovirus infection. Bone Marrow Transplant. 2004;34(12):1071–5.CrossRefGoogle Scholar
Kaptein, SJ, Efferth, T, Leis, M, Rechter, S, Auerochs, S, Kalmer, M, et al. The anti-malaria drug artesunate inhibits replication of cytomegalovirus in vitro and in vivo. Antiviral Res. 2006;69(2):60–9.CrossRefGoogle ScholarPubMed
Lönnqvist, B, Ringdén, O, Ljungman, P, Wahren, B, Gahrton, G. Reduced risk of recurrent leukaemia in bone marrow transplant recipients after cytomegalovirus infection. Br J Haematol. 1986;63(4):671–9.Google Scholar
Elmaagacli, AH, Steckel, NK, Koldehoff, M, Hegerfeldt, Y, Trenschel, R, Ditschkowski, M, et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood. 2011;118(5):1402–12.Google Scholar
Styczynski, J, Reusser, P, Einsele, H, de la Camara, R, Cordonnier, C, Ward, KN, et al. Management of HSV, VZV and EBV infections in patients with hematological malignancies and after SCT: guidelines from the Second European Conference on Infections in Leukemia. Bone Marrow Transplant. 2009;43(10):757-70.Google Scholar
Styczynski, J, Gil, L, Tridello, G, Ljungman, P, Donnelly, JP, van der Velden, W, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2013;57(6):794802.Google Scholar
Leong, HN, Tuke, PW, Tedder, RS, Khanom, AB, Eglin, RP, Atkinson, CE, et al. The prevalence of chromosomally integrated human herpesvirus 6 genomes in the blood of UK blood donors. J Med Virol. 2007;79(1):4551.Google Scholar
Hall, CB, Caserta, MT, Schnabel, K, Shelley, LM, Marino, AS, Carnahan, JA, et al. Chromosomal integration of human herpesvirus 6 is the major mode of congenital human herpesvirus 6 infection. Pediatrics. 2008;122(3):513-20.CrossRefGoogle ScholarPubMed
Schmidt-Hieber, M, Schwender, J, Heinz, WJ, Zabelina, T, Kuhl, JS, Mousset, S, et al. Viral encephalitis after allogeneic stem cell transplantation: a rare complication with distinct characteristics of different causative agents. Haematologica. 2011;96(1):142–9.Google Scholar
Seeley, WW, Marty, FM, Holmes, TM, Upchurch, K, Soiffer, RJ, Antin, JH, et al. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology. 2007;69(2):156–65.Google Scholar
Zerr, DM, Gooley, TA, Yeung, L, Huang, ML, Carpenter, P, Wade, JC, et al. Human herpesvirus 6 reactivation and encephalitis in allogeneic bone marrow transplant recipients. Clin Infect Dis. 2001;33(6):763–71.Google Scholar
Zerr, DM, Fann, JR, Breiger, D, Boeckh, M, Adler, AL, Xie, H, et al. HHV-6 reactivation and its effect on delirium and cognitive functioning in hematopoietic cell transplantation recipients. Blood. 2011;117(19):5243–9.Google Scholar
Scheurer, ME, Pritchett, JC, Amirian, ES, Zemke, NR, Lusso, P, Ljungman, P. HHV-6 encephalitis in umbilical cord blood transplantation: a systematic review and meta-analysis. Bone Marrow Transplant. 2013;48(4):574–80.Google Scholar
Zerr, DM. Human herpesvirus 6 and central nervous system disease in hematopoietic cell transplantation. J Clin Virol. 2006;37 (Suppl. 1):S52–6.Google Scholar
Muta, T, Fukuda, T, Harada, M. Human herpesvirus-6 encephalitis in hematopoietic SCT recipients in Japan: a retrospective multicenter study. Bone Marrow Transplant. 2009;43(7):583–5Google Scholar
Zerr, DM, Corey, L, Kim, HW, Huang, ML, Nguy, L, Boeckh, M. Clinical outcomes of human herpesvirus 6 reactivation after hematopoietic stem cell transplantation. Clin Infect Dis. 2005;40(7):932–40.Google Scholar
Zerr, DM, Gupta, D, Huang, ML, Carter, R, Corey, L. Effect of antivirals on human herpesvirus 6 replication in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002;34(3):309–17.Google Scholar
Tomblyn, M, Chiller, T, Einsele, H, Gress, R, Sepkowitz, K, Storek, J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: a global perspective. Preface. Bone Marrow Transplant. 2009;44(8):453–5.Google Scholar
Erard, V, Guthrie, KA, Varley, C, Heugel, J, Wald, A, Flowers, ME, et al. One-year acyclovir prophylaxis for preventing varicella-zoster virus (VZV) disease following hematopoietic cell transplantation: no evidence of rebound VZV disease after drug discontinuation. Blood. 2007;110(8):3071–7.CrossRefGoogle Scholar
Feuchtinger, T, Lucke, J, Hamprecht, K, Richard, C, Handgretinger, R, Schumm, M, et al. Detection of adenovirus-specific T cells in children with adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2005;128(4):503–9.Google Scholar
Guerin-El Khourouj, V, Dalle, JH, Pedron, B, Yakouben, K, Bensoussan, D, Cordeiro, DJ, et al. Quantitative and qualitative CD4 T cell immune responses related to adenovirus DNAemia in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(4):476–85.Google Scholar
Zandvliet, ML, van Liempt, E, Jedema, I, Kruithof, S, Kester, MG, Guchelaar, HJ, et al. Simultaneous isolation of CD8(+) and CD4(+) T cells specific for multiple viruses for broad antiviral immune reconstitution after allogeneic stem cell transplantation. J Immunother. 2011;34(3):307–19.Google Scholar
Lion, T, Kosulin, K, Landlinger, C, Rauch, M, Preuner, S, Jugovic, D, et al. Monitoring of adenovirus load in stool by real-time PCR permits early detection of impending invasive infection in patients after allogeneic stem cell transplantation. Leukemia. 2010;24(4):706–14.Google Scholar
Ohrmalm, L, Lindblom, A, Omar, H, Norbeck, O, Gustafson, I, Lewensohn-Fuchs, I, et al. Evaluation of a surveillance strategy for early detection of adenovirus by PCR of peripheral blood in hematopoietic SCT recipients: incidence and outcome. Bone Marrow Transplant. 2011;46(2):267–72.CrossRefGoogle ScholarPubMed
Matthes-Martin, S, Feuchtinger, T, Shaw, PJ, Engelhard, D, Hirsch, HH, Cordonnier, C, et al. European guidelines for diagnosis and treatment of adenovirus infection in leukemia and stem cell transplantation: summary of ECIL-4 (2011). Transplant Infect Dis. 2012;14(6):555–63.Google Scholar
Lion, T, Baumgartinger, R, Watzinger, F, Matthes-Martin, S, Suda, M, Preuner, S, et al. Molecular monitoring of adenovirus in peripheral blood after allogeneic bone marrow transplantation permits early diagnosis of disseminated disease. Blood. 2003;102(3):1114–20.Google Scholar
Florescu, DF, Pergam, SA, Neely, MN, Qiu, F, Johnston, C, Way, S, et al. Safety and efficacy of CMX001 as salvage therapy for severe adenovirus infections in immunocompromised patients. Biol Blood Marrow Transplant. 2012;18(5):731–8.Google Scholar
Grimley, M, Prasad, V, Kurtzberg, J, Chemaly, R, Brundage, T, Wilson, C, et al. Twice-Weekly Brincidofovir (CMX001) shows promising antiviral activity in immunocompromised transplant recipients with asymptomatic adenovirus viremia. Biol Blood Marrow Transplant. 2104;20(2 Suppl).Google Scholar
Campbell, AP, Guthrie, KA, Englund, JA, Farney, RM, Minerich, EL, Kuypers, J, et al. Clinical outcomes associated with respiratory virus detection before allogeneic hematopoietic stem cell transplant. Clin Infect Dis. 2015;61(2):192202.Google Scholar
Lehners, N, Schnitzler, P, Geis, S, Puthenparambil, J, Benz, MA, Alber, B, et al. Risk factors and containment of respiratory syncytial virus outbreak in a hematology and transplant unit. Bone Marrow Transplant. 2013;48(12):1548–53.CrossRefGoogle Scholar
Kim, YJ, Guthrie, KA, Waghmare, A, Walsh, EE, Falsey, AR, Kuypers, J, et al. Respiratory syncytial virus in hematopoietic cell transplant recipients: factors determining progression to lower respiratory tract disease. J Infect Dis. 2014;209(8):1195–204.Google Scholar
Boeckh, M, Englund, J, Li, Y, Miller, C, Cross, A, Fernandez, H, et al. Randomized controlled multicenter trial of aerosolized ribavirin for respiratory syncytial virus upper respiratory tract infection in hematopoietic cell transplant recipients. Clin Infect Dis. 2007;44(2):245–9.Google Scholar
Shah, DP, Ghantoji, SS, Shah, JN, El Taoum, KK, Jiang, Y, Popat, U, et al. Impact of aerosolized ribavirin on mortality in 280 allogeneic haematopoietic stem cell transplant recipients with respiratory syncytial virus infections. J Antimicrob Chemother. 2013;68(8):1872–80.Google Scholar
Shah, JN, Chemaly, RF. Management of RSV infections in adult recipients of hematopoietic stem cell transplantation. Blood. 2011;117(10):2755–63.CrossRefGoogle ScholarPubMed
Seo, S, Campbell, AP, Xie, H, Chien, JW, Leisenring, WM, Englund, JA, et al. Outcome of respiratory syncytial virus lower respiratory tract disease in hematopoietic cell transplant recipients receiving aerosolized ribavirin: significance of stem cell source and oxygen requirement. Biol Blood Marrow Transplant. 2013;19(4):589–96.Google Scholar
Tramontana, AR, George, B, Hurt, AC, Doyle, JS, Langan, K, Reid, AB, et al. Oseltamivir resistance in adult oncology and hematology patients infected with pandemic (H1N1) 2009 virus, Australia. Emerg Infect Dis. 2010;16(7):1068–75.Google Scholar
Mohty, B, Thomas, Y, Vukicevic, M, Nagy, M, Levrat, E, Bernimoulin, M, et al. Clinical features and outcome of 2009-influenza A (H1N1) after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2012;47(2):236–42.Google Scholar
Lagler, H, Wenisch, JM, Tobudic, S, Gualdoni, GA, Rodler, S, Rasoul-Rockenschaub, S, et al. Pandemic influenza A H1N1 vaccine in recipients of solid organ transplants: immunogenicity and tolerability outcomes after vero cell derived, non-adjuvanted, whole-virion vaccination. Vaccine. 2011;29(40):6888–93.Google Scholar
Ljungman, P, Ward, KN, Crooks, BN, Parker, A, Martino, R, Shaw, PJ, et al. Respiratory virus infections after stem cell transplantation: a prospective study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2001;28(5):479–84.CrossRefGoogle ScholarPubMed
Ljungman, P, de la Camara, R, Perez-Bercoff, L, Abecasis, M, Nieto Campuzano, JB, Cannata-Ortiz, MJ, et al. Outcome of pandemic H1N1 infections in hematopoietic stem cell transplant recipients. Haematologica. 2011;96(8):1231–5.Google Scholar
Casper, C, Englund, J, Boeckh, M. How I treat influenza in patients with hematologic malignancies. Blood. 2010;115(7):1331–42.Google Scholar
Ljungman, P, Avetisyan, G. Influenza vaccination in hematopoietic SCT recipients. Bone Marrow Transplant. 2008;42(10):637–41.Google Scholar
Rubin, LG, Levin, MJ, Ljungman, P, Davies, EG, Avery, R, Tomblyn, M, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58(3):309–18.Google Scholar
Machado, CM, Cardoso, MR, da Rocha, IF, Boas, LS, Dulley, FL, Pannuti, CS. The benefit of influenza vaccination after bone marrow transplantation. Bone Marrow Transplant. 2005;36(10):897900.CrossRefGoogle ScholarPubMed
Engelhard, D, Mohty, B, de la Camara, R, Cordonnier, C, Ljungman, P. European guidelines for prevention and management of influenza in hematopoietic stem cell transplantation and leukemia patients: Summary of ECIL-4 (2011). Transplant Infecti Dis. 2013;15(3):219–32.Google Scholar
Chemaly, RF, Hanmod, SS, Rathod, DB, Ghantoji, SS, Jiang, Y, Doshi, A, et al. The characteristics and outcomes of parainfluenza virus infections in 200 patients with leukemia or recipients of hematopoietic stem cell transplantation. Blood. 2012;119(12):2738–45; quiz 969.Google Scholar
Srinivasan, A, Wang, C, Yang, J, Inaba, H, Shenep, JL, Leung, WH, et al. Parainfluenza virus infections in children with hematologic malignancies. Pediatr Infect Dis J. 2011;30(10):855–9.Google Scholar
Ustun, C, Slaby, J, Shanley, RM, Vydra, J, Smith, AR, Wagner, JE, et al. Human parainfluenza virus infection after hematopoietic stem cell transplantation: risk factors, management, mortality, and changes over time. Biol Blood Marrow Transplant. 2012;8(10):1580–8.Google Scholar
Srinivasan, A, Wang, C, Yang, J, Shenep, JL, Leung, WH, Hayden, RT. Symptomatic parainfluenza virus infections in children undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(10):1520–7.Google Scholar
Seo, S, Xie, H, Campbell, AP, Kuypers, JM, Leisenring, WM, Englund, JA, et al. Parainfluenza virus lower respiratory tract disease after hematopoietic cell transplant: viral detection in the lung predicts outcome. Clin Infect Dis. 2014;58(10):1357–68.Google Scholar
Raza, K, Ismailjee, SB, Crespo, M, Studer, SM, Sanghavi, S, Paterson, DL, et al. Successful outcome of human metapneumovirus (hMPV) pneumonia in a lung transplant recipient treated with intravenous ribavirin. J Heart Lung Transplant. 2007;26(8):862–4.Google Scholar
Englund, JA, Boeckh, M, Kuypers, J, Nichols, WG, Hackman, RC, Morrow, RA, et al. Brief communication: fatal human metapneumovirus infection in stem-cell transplant recipients. Ann Intern Med. 2006;144(5):344–9.Google Scholar
Renaud, C, Xie, H, Seo, S, Kuypers, J, Cent, A, Corey, L, et al. Mortality rates of human metapneumovirus and respiratory syncytial virus lower respiratory tract infections in hematopoietic cell transplantation recipients. Biol Blood Marrow Transplant. 2013;19(8):1220–6.Google Scholar
Seo, S, Martin, E, Xie, H, Kuypers, J, Campbell, A, Choi, S-M, et al. Human rhinovirus RNA detection in the lower respiratory tract of hematopoietic cell transplant recipients: association with mortality. Biol Blood Marrow Transplant. 2013;19(2 Suppl.):S167–S8.Google Scholar
Lee, YJ, Zheng, J, Kolitsopoulos, Y, Chung, D, Amigues, I, Son, T, et al. Relationship of BK polyoma virus (BKV) in the urine with hemorrhagic cystitis and renal function in recipients of T cell-depleted peripheral blood and cord blood stem cell transplantations. Biol Blood Marrow Transplant. 2014;20(8):1204-10.Google Scholar
Leung, AY, Suen, CK, Lie, AK, Liang, RH, Yuen, KY, Kwong, YL. Quantification of polyoma BK viruria in hemorrhagic cystitis complicating bone marrow transplantation. Blood. 2001;98(6):1971–8.Google Scholar
Gilis, L, Morisset, S, Billaud, G, Ducastelle-Lepretre, S, Labussiere-Wallet, H, Nicolini, FE, et al. High burden of BK virus-associated hemorrhagic cystitis in patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2014;49(5):664–70.Google Scholar
Erard, V, Kim, HW, Corey, L, Limaye, A, Huang, ML, Myerson, D, et al. BK DNA viral load in plasma: evidence for an association with hemorrhagic cystitis in allogeneic hematopoietic cell transplant recipients. Blood. 2005;106(3):1130–2.Google Scholar
Laskin, BL, Denburg, M, Furth, S, Diorio, D, Goebel, J, Davies, SM, et al. BK viremia precedes hemorrhagic cystitis in children undergoing allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(8):1175–82.Google Scholar
Cesaro, S, Facchin, C, Tridello, G, Messina, C, Calore, E, Biasolo, MA, et al. A prospective study of BK-virus-associated haemorrhagic cystitis in paediatric patients undergoing allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant. 2008;41(4):363–70.Google Scholar
Cesaro, S, Hirsch, HH, Faraci, M, Owoc-Lempach, J, Beltrame, A, Tendas, A, et al. Cidofovir for BK virus-associated hemorrhagic cystitis: a retrospective study. Clin Infect Dis. 2009;49(2):233–40.CrossRefGoogle ScholarPubMed
Kwon, HJ, Kang, JH, Lee, JW, Chung, NG, Kim, HK, Cho, B. Treatment of BK virus-associated hemorrhagic cystitis in pediatric hematopoietic stem cell transplant recipients with cidofovir: a single-center experience. Transplant Infect Dis. 2013;15(6):569–74.Google Scholar
Ganguly, N, Clough, LA, Dubois, LK, McGuirk, JP, Abhyankar, S, Aljitawi, OS, et al. Low-dose cidofovir in the treatment of symptomatic BK virus infection in patients undergoing allogeneic hematopoietic stem cell transplantation: a retrospective analysis of an algorithmic approach. Transplant Infect Dis. 2010;12(5):406–11.CrossRefGoogle ScholarPubMed
Chen, XC, Liu, T, Li, JJ, He, C, Meng, WT, Huang, R. Efficacy and safety of leflunomide for the treatment of BK virus-associated hemorrhagic cystitis in allogeneic hematopoietic stem cell transplantation recipients. Acta Haematol. 2013;130(1):52–6.Google Scholar
Versluis, J, Pas, SD, Agteresch, HJ, de Man, RA, Maaskant, J, Schipper, ME, et al. Hepatitis E virus: an underestimated opportunistic pathogen in recipients of allogeneic hematopoietic stem cell transplantation. Blood. 2013;122(6):1079–86.Google Scholar
Hammond, SP, Borchelt, AM, Ukomadu, C, Ho, VT, Baden, LR, Marty, FM. Hepatitis B virus reactivation following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009;15(9):1049–59.Google Scholar
Onozawa, M, Hashino, S, Izumiyama, K, Kahata, K, Chuma, M, Mori, A, et al. Progressive disappearance of anti-hepatitis B surface antigen antibody and reverse seroconversion after allogeneic hematopoietic stem cell transplantation in patients with previous hepatitis B virus infection. Transplantation. 2005;79(5):616–9.Google Scholar
Arai, S, Lee, LA, Vogelsang, GB. A systematic approach to hepatic complications in hematopoietic stem cell transplantation. J Hematother Stem Cell Res. 2002;11(2):215–29.Google Scholar
Lalazar, G, Rund, D, Shouval, D. Screening, prevention and treatment of viral hepatitis B reactivation in patients with haematological malignancies. Br J Haematol. 2007;136(5):699712Google Scholar
Mallet, V, van Bömmel, F, Doerig, C, Pischke, S, Hermine, O, Locasciulli, A, et al. Management of viral hepatitis in patients with haematological malignancy and in patients undergoing haemopoietic stem cell transplantation: recommendations of the 5th European Conference on Infections in Leukaemia (ECIL-5). Lancet Infect Dis. 2016;16(5):606–17.Google Scholar
Mahale, P, Kontoyiannis, DP, Chemaly, RF, Jiang, Y, Hwang, JP, Davila, M, et al. Acute exacerbation and reactivation of chronic hepatitis C virus infection in cancer patients. J Hepatol. 2012;57(6):1177–85.Google Scholar
Tomblyn, M, Chen, M, Kukreja, M, Aljurf, MD, Al Mohareb, F, Bolwell, BJ, et al. No increased mortality from donor or recipient hepatitis B- and/or hepatitis C-positive serostatus after related-donor allogeneic hematopoietic cell transplantation. Transplant Infect Dis. 2012;14(5):468–78.Google Scholar
Mahale, P, Okhuysen, PC, Torres, HA. Does chemotherapy cause viral relapse in cancer patients with hepatitis C infection successfully treated with antivirals? Clin Gastroenterol Hepatol. 2014;12(6):1051–4 e1.Google Scholar
Ljungman, P, Locasciulli, A, de Soria, VG, Bekassy, AN, Brinch, L, Espigado, I, et al. Long-term follow-up of HCV-infected hematopoietic SCT patients and effects of antiviral therapy. Bone Marrow Transplant. 2012;47(9):1217–21.Google Scholar
Peffault de Latour, R, Levy, V, Asselah, T, Marcellin, P, Scieux, C, Ades, L, et al. Long-term outcome of hepatitis C infection after bone marrow transplantation. Blood. 2004;103(5):1618–24.Google Scholar

References

Pasquini, MC, Wang, Z, Horowitz, MM, Gale, RP. Report from the Center for International Blood and Marrow Transplant Research (CIBMTR): current uses and outcomes of hematopoietic cell transplants for blood and bone marrow disorders. Clinical Transplants. 2010:87–105.Google Scholar
Girmenia, C, Raiola, AM, Piciocchi, A, Algarotti, A, Stanzani, M, Cudillo, L, et al. Incidence and outcome of invasive fungal diseases after allogeneic stem cell transplantation: a prospective study of the Gruppo Italiano Trapianto Midollo Osseo (GITMO). Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(6):872–80.Google Scholar
De Pauw, B, Walsh, TJ, Donnelly, JP, Stevens, DA, Edwards, JE, Calandra, T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2008;46(12):1813–21.Google Scholar
Wingard, JR. Lipid formulations of amphotericins: are you a lumper or a splitter? Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2002;35(7):891–5.Google Scholar
Dodds Ashley, ES, Lewis, R, Lewis, JS, Martin, C, Andes, D. Pharmacology of systemic antifungal agents. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2006;43:S2839.Google Scholar
Walsh, TJ, Anaissie, EJ, Denning, DW, Herbrecht, R, Kontoyiannis, DP, Marr, KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2008;46(3):327–60.Google Scholar
Maertens, J, Cornely, OA, Ullmann, AJ, Heinz, WJ, Krishna, G, Patino, H, et al. Phase 1B study of the pharmacokinetics and safety of posaconazole intravenous solution in patients at risk for invasive fungal disease. Antimicrobial Agents and Chemotherapy. 2014;58(7):3610–7.Google Scholar
Girmenia, C, Barosi, G, Piciocchi, A, Arcese, W, Aversa, F, Bacigalupo, A, et al. Primary prophylaxis of invasive fungal diseases in allogeneic stem cell transplantation: revised recommendations from a consensus process by Gruppo Italiano Trapianto Midollo Osseo (GITMO). Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(8):1080–8.Google Scholar
Wingard, JR, Merz, WG, Rinaldi, MG, Johnson, TR, Karp, JE, Saral, R. Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenia treated prophylactically with fluconazole. The New England Journal of Medicine. 1991;325(18):1274–7.Google Scholar
Marr, KA, Seidel, K, Slavin, MA, Bowden, RA, Schoch, HG, Flowers, ME, et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood. 2000;96(6):2055–61.Google Scholar
Winston, DJ, Maziarz, RT, Chandrasekar, PH, Lazarus, HM, Goldman, M, Blumer, JL, et al. Intravenous and oral itraconazole versus intravenous and oral fluconazole for long-term antifungal prophylaxis in allogeneic hematopoietic stem-cell transplant recipients. A multicenter, randomized trial. Annals of Internal Medicine. 2003;138(9):705–13.Google Scholar
Marr, KA, Crippa, F, Leisenring, W, Hoyle, M, Boeckh, M, Balajee, SA, et al. Itraconazole versus fluconazole for prevention of fungal infections in patients receiving allogeneic stem cell transplants. Blood. 2004;103(4):1527–33.Google Scholar
Vehreschild, JJ, Sieniawski, M, Reuter, S, Arenz, D, Reichert, D, Maertens, J, et al. Efficacy of caspofungin and itraconazole as secondary antifungal prophylaxis: analysis of data from a multinational case registry. International Journal of Antimicrobial Agents. 2009;34(5):446–50.Google Scholar
Wingard, JR, Carter, SL, Walsh, TJ, Kurtzberg, J, Small, TN, Baden, LR, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood. 2010;116(24):5111–8.Google Scholar
Marks, DI, Pagliuca, A, Kibbler, CC, Glasmacher, A, Heussel, CP, Kantecki, M, et al. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. British Journal of Haematology. 2011;155(3):318–27.Google Scholar
Takagi, S, Araoka, H, Uchida, N, Uchida, Y, Kaji, D, Ota, H, et al. A prospective feasibility study of primary prophylaxis against invasive fungal disease with voriconazole following umbilical cord blood transplantation with fludarabine-based conditioning. International Journal of Hematology. 2014;99(5):652–8.Google Scholar
Cordonnier, C, Rovira, M, Maertens, J, Olavarria, E, Faucher, C, Bilger, K, et al. Voriconazole for secondary prophylaxis of invasive fungal infections in allogeneic stem cell transplant recipients: results of the VOSIFI study. Haematologica. 2010;95(10):1762–8.Google Scholar
Gergis, U, Markey, K, Greene, J, Kharfan-Dabaja, M, Field, T, Wetzstein, G, et al. Voriconazole provides effective prophylaxis for invasive fungal infection in patients receiving glucocorticoid therapy for GvHD. Bone Marrow Transplantation. 2010;45(4):662–7.Google Scholar
Ullmann, AJ, Lipton, JH, Vesole, DH, Chandrasekar, P, Langston, A, Tarantolo, SR, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. The New England Journal of Medicine. 2007;356(4):335–47.Google Scholar
Sanchez-Ortega, I, Patino, B, Arnan, M, Peralta, T, Parody, R, Gudiol, C, et al. Clinical efficacy and safety of primary antifungal prophylaxis with posaconazole vs itraconazole in allogeneic blood and marrow transplantation. Bone Marrow Transplantation. 2011;46(5):733–9.Google Scholar
Winston, DJ, Bartoni, K, Territo, MC, Schiller, GJ. Efficacy, safety, and breakthrough infections associated with standard long-term posaconazole antifungal prophylaxis in allogeneic stem cell transplantation recipients. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2011;17(4):507–15.Google Scholar
Chaftari, AM, Hachem, RY, Ramos, E, Kassis, C, Campo, M, Jiang, Y, et al. Comparison of posaconazole versus weekly amphotericin B lipid complex for the prevention of invasive fungal infections in hematopoietic stem-cell transplantation. Transplantation. 2012;94(3):302–8.Google Scholar
Hahn, J, Stifel, F, Reichle, A, Holler, E, Andreesen, R. Clinical experience with posaconazole prophylaxis: a retrospective analysis in a haematological unit. Mycoses. 2011;54 (Suppl 1):12–6.Google Scholar
Chou, LS, Lewis, RE, Ippoliti, C, Champlin, RE, Kontoyiannis, DP. Caspofungin as primary antifungal prophylaxis in stem cell transplant recipients. Pharmacotherapy. 2007;27(12):1644–50.Google Scholar
de Fabritiis, P, Spagnoli, A, Di Bartolomeo, P, Locasciulli, A, Cudillo, L, Milone, G, et al. Efficacy of caspofungin as secondary prophylaxis in patients undergoing allogeneic stem cell transplantation with prior pulmonary and/or systemic fungal infection. Bone Marrow Transplantation. 2007;40(3):245–9.Google Scholar
van Burik, JA, Ratanatharathorn, V, Stepan, DE, Miller, CB, Lipton, JH, Vesole, DH, et al. Micafungin versus fluconazole for prophylaxis against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell transplantation. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2004;39(10):1407–16.Google Scholar
Huang, X, Chen, H, Han, M, Zou, P, Wu, D, Lai, Y, et al. Multicenter, randomized, open-label study comparing the efficacy and safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients undergoing hematopoietic stem cell transplant. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2012;18(10):1509–16.Google Scholar
Ziakas, PD, Kourbeti, IS, Mylonakis, E. Systemic antifungal prophylaxis after hematopoietic stem cell transplantation: a meta-analysis. Clinical Therapeutics. 2014;36(2):292306 e1.Google Scholar
Jansen, J, Akard, LP, Wack, MF, Thompson, JM, Dugan, MJ, Leslie, JK, et al. Delayed ABLC prophylaxis after allogeneic stem-cell transplantation. Mycoses. 2006;49(5):397404.Google Scholar
Cordonnier, C, Mohty, M, Faucher, C, Pautas, C, Robin, M, Vey, N, et al. Safety of a weekly high dose of liposomal amphotericin B for prophylaxis of invasive fungal infection in immunocompromised patients: PROPHYSOME Study. International Journal of Antimicrobial Agents. 2008;31(2):135–41.Google Scholar
Penack, O, Schwartz, S, Martus, P, Reinwald, M, Schmidt-Hieber, M, Thiel, E, et al. Low-dose liposomal amphotericin B in the prevention of invasive fungal infections in patients with prolonged neutropenia: results from a randomized, single-center trial. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO. 2006;17(8):1306–12.Google Scholar
Rijnders, BJ, Cornelissen, JJ, Slobbe, L, Becker, MJ, Doorduijn, JK, Hop, WC, et al. Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: a randomized, placebo-controlled trial. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2008;46(9):1401–8.Google Scholar
Walsh, TJ, Finberg, RW, Arndt, C, Hiemenz, J, Schwartz, C, Bodensteiner, D, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. The New England Journal of Medicine. 1999;340(10):764–71.Google Scholar
Wingard, JR, White, MH, Anaissie, E, Raffalli, J, Goodman, J, Arrieta, A, et al. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2000;31(5):1155–63.Google Scholar
Walsh, TJ, Pappas, P, Winston, DJ, Lazarus, HM, Petersen, F, Raffalli, J, et al. Voriconazole compared with liposomal amphotericin B for empirical antifungal therapy in patients with neutropenia and persistent fever. The New England Journal of Medicine. 2002;346(4):225–34.CrossRefGoogle ScholarPubMed
Walsh, TJ, Teppler, H, Donowitz, GR, Maertens, JA, Baden, LR, Dmoszynska, A, et al. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. The New England Journal of Medicine. 2004;351(14):1391–402.Google Scholar
Kubiak, DW, Bryar, JM, McDonnell, AM, Delgado-Flores, JO, Mui, E, Baden, LR, et al. Evaluation of caspofungin or micafungin as empiric antifungal therapy in adult patients with persistent febrile neutropenia: a retrospective, observational, sequential cohort analysis. Clinical Therapeutics. 2010;32(4):637–48.Google Scholar
Yamaguchi, M, Kurokawa, T, Ishiyama, K, Aoki, G, Ueda, M, Matano, S, et al. Efficacy and safety of micafungin as an empirical therapy for invasive fungal infections in patients with hematologic disorders: a multicenter, prospective study. Annals of Hematology. 2011;90(10):1209–17.Google Scholar
Chen, SC, Slavin, MA, Sorrell, TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs. 2011;71(1):1141.Google Scholar
Anaissie, EJ, Vartivarian, SE, Abi-Said, D, Uzun, O, Pinczowski, H, Kontoyiannis, DP, et al. Fluconazole versus amphotericin B in the treatment of hematogenous candidiasis: a matched cohort study. The American Journal of Medicine. 1996;101(2):170–6.Google Scholar
Mora-Duarte, J, Betts, R, Rotstein, C, Colombo, AL, Thompson-Moya, L, Smietana, J, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. The New England Journal of Medicine. 2002;347(25):2020–9.CrossRefGoogle ScholarPubMed
Ullmann, AJ, Akova, M, Herbrecht, R, Viscoli, C, Arendrup, MC, Arikan-Akdagli, S, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2012;18 (Suppl 7):5367.Google Scholar
Pappas, PG, Rotstein, CM, Betts, RF, Nucci, M, Talwar, D, De Waele, JJ, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America. 2007;45(7):883–93.Google Scholar
Kuse, ER, Chetchotisakd, P, da Cunha, CA, Ruhnke, M, Barrios, C, Raghunadharao, D, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369(9572):1519–27.Google Scholar
Ostrosky-Zeichner, L, Oude Lashof, AM, Kullberg, BJ, Rex, JH. Voriconazole salvage treatment of invasive candidiasis. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology. 2003;22(11):651–5.Google Scholar
Kullberg, BJ, Sobel, JD, Ruhnke, M, Pappas, PG, Viscoli, C, Rex, JH, et al. Voriconazole versus a regimen of amphotericin B followed by fluconazole for candidaemia in non-neutropenic patients: a randomised non-inferiority trial. Lancet. 2005;366(9495):1435–42.Google Scholar
Herbrecht, R, Denning, DW, Patterson, TF, Bennett, JE, Greene, RE, Oestmann, JW, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. The New England Journal of Medicine. 2002;347(6):408–15.Google Scholar
Bowden, R, Chandrasekar, P, White, MH, Li, X, Pietrelli, L, Gurwith, M, et al. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2002;35(4):359–66.Google Scholar
Walsh, TJ, Raad, I, Patterson, TF, Chandrasekar, P, Donowitz, GR, Graybill, R, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2007;44(1):212.Google Scholar
Heinz, WJ, Grau, A, Ulrich, A, Helle-Beyersdorf, A, Zirkel, J, Schirmer, D, et al. Impact of benzodiazepines on posaconazole serum concentrations: a population-based pharmacokinetic study on drug interaction. Current Medical Research and Opinion. 2012;28(4):551–7.Google Scholar
Jang, SH, Colangelo, PM, Gobburu, JV. Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: evaluating the need to adjust doses based on drug concentrations in plasma. Clinical Pharmacology and Therapeutics. 2010;88(1):115–9.Google Scholar
Andes, D, Pascual, A, Marchetti, O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrobial Agents and Chemotherapy. 2009;53(1):2434.Google Scholar
Heinz, WJ, Einsele, H, Helle-Beyersdorf, A, Zirkel, J, Grau, A, Schirmer, D, et al. Posaconazole concentrations after allogeneic hematopoietic stem cell transplantation. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2013;15(5):449–56.Google Scholar
Lebeaux, D, Lanternier, F, Elie, C, Suarez, F, Buzyn, A, Viard, JP, et al. Therapeutic drug monitoring of posaconazole: a monocentric study with 54 adults. Antimicrobial Agents and Chemotherapy. 2009;53(12):5224–9.Google Scholar
Cornely, OA, Helfgott, D, Langston, A, Heinz, W, Vehreschild, JJ, Vehreschild, MJ, et al. Pharmacokinetics of different dosing strategies of oral posaconazole in patients with compromised gastrointestinal function and who are at high risk for invasive fungal infection. Antimicrobial Agents and Chemotherapy. 2012;56(5):2652–8.Google Scholar
Denning, DW, Ribaud, P, Milpied, N, Caillot, D, Herbrecht, R, Thiel, E, et al. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2002;34(5):563–71.Google Scholar
Pascual, A, Calandra, T, Bolay, S, Buclin, T, Bille, J, Marchetti, O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2008;46(2):201–11.Google Scholar
Park, WB, Kim, NH, Kim, KH, Lee, SH, Nam, WS, Yoon, SH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2012;55(8):1080–7.Google Scholar
Ueda, K, Nannya, Y, Kumano, K, Hangaishi, A, Takahashi, T, Imai, Y, et al. Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. International Journal of Hematology. 2009;89(5):592–9.Google Scholar
Troke, PF, Hockey, HP, Hope, WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrobial Agents and Chemotherapy. 2011;55(10):4782–8.Google Scholar
Maertens, J, Glasmacher, A, Herbrecht, R, Thiebaut, A, Cordonnier, C, Segal, BH, et al. Multicenter, noncomparative study of caspofungin in combination with other antifungals as salvage therapy in adults with invasive aspergillosis. Cancer. 2006;107(12):2888–97.Google Scholar
Kontoyiannis, DP, Ratanatharathorn, V, Young, JA, Raymond, J, Laverdiere, M, Denning, DW, et al. Micafungin alone or in combination with other systemic antifungal therapies in hematopoietic stem cell transplant recipients with invasive aspergillosis. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2009;11(1):8993.Google Scholar
Meletiadis, J, Petraitis, V, Petraitiene, R, Lin, P, Stergiopoulou, T, Kelaher, AM, et al. Triazole-polyene antagonism in experimental invasive pulmonary aspergillosis: in-vitro and in vivo correlation. The Journal of Infectious Diseases. 2006;194(7):1008–18.Google Scholar
Marr, KA, Schlamm, H, Rottinghaus, ST,Jagannatha, S, Bow, EJ, Wingard, JR, et al. A randomised, double-blind study of combination antifungal therapy with voriconazole and anidulafungin versus voriconazole monotherapy for primary treatment of invasive aspergillosis. European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), March–April, 2012.Google Scholar
Reed, C, Bryant, R, Ibrahim, AS, Edwards, J Jr., Filler, SG, Goldberg, R, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2008;47(3):364–71.Google Scholar
Cunha, C, Aversa, F, Lacerda, JF, Busca, A, Kurzai, O, Grube, M, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. The New England Journal of Medicine. 2014;370(5):421–32.Google Scholar
Bochud, PY, Chien, JW, Marr, KA, Leisenring, WM, Upton, A, Janer, M, et al. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. The New England Journal of Medicine. 2008;359(17):1766–77.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×