Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-14T15:44:33.882Z Has data issue: false hasContentIssue false

Section 11 - Hematopoietic Cell Transplants for Myeloproliferative Neoplasms

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 339 - 360
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Fefer, A, Cheever, MA, Thomas, ED, Boyd, C, Ramberg, R, Glucksburg, H, et al. Disappearance of Ph1-positive cells in four patients with chronic granulocytic leukemia after chemotherapy, irradiation and marrow transplantation from an identical twin. N Engl J Med. 1979;300:333–7.Google Scholar
Goldman, JM, Apperley, JF, Jones, LM, Marcus, R, Goolden, A, Batchelor, R, et al. Bone marrow transplantation for patients with chronic myeloid leukaemia. N Eng J Med. 1986;314:202–7.Google Scholar
Goldman, JM, Mackinnon, S. Bone marrow transplantation for chronic myeloid leukaemia using matched unrelated donors. Bone Marrow Transplant. 1989;Suppl 4:38–9.Google Scholar
Goldman, JM, Majhail, NS, Klein, JP, Wang, Z, Sobocinski, KA, Arora, M, et al Relapse and late mortality in 5-year survivors of myeloablative allogeneic hematopoietic cell transplantation for chronic myeloid leukemia in first chronic phase. J Clin Oncol. 2010;28:1888–95.Google Scholar
Apperley, JF, Jones, L, Hale, G, Waldmann, H, Hows, J, Rombos, Y, et al. Bone marrow transplantation for patients with chronic myeloid leukaemia: T-cell depletion with Campath-1 reduces the incidence of graft-versus-host disease but may increase the risk of leukaemic relapse. Bone Marrow Transplant. 1986;1:5366.Google Scholar
Kolb, HJ, Mittermüller, J, Clemm, C, Holler, E, Ledderose, G, Brehm, G et al. Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood. 1990;76:2462–5.Google Scholar
Kolb, HJ, Schattenberg, A, Goldman, JM, Hertenstein, B, Jacobsen, N, Arcese, W et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. Blood. 1995;86:2041–50.Google Scholar
Or, R, Shapira, MY, Resnick, I, Amar, A, Ackerstein, A, Samuel, S et al. Nonmyeloablative allogeneic stem cell transplantation for the treatment of chronic myeloid leukemia in first chronic phase. Blood. 2003;101:441–5.Google Scholar
Crawley, C, Szydlo, R, Lalancette, M, Bacigalupo, A, Lange, A, Brune, M, et al. Outcomes of reduced-intensity transplantation for chronic myeloid leukemia: an analysis of prognostic factors from the Chronic Leukemia Working Party of the EBMT. Blood. 2005;106:2969–76.CrossRefGoogle ScholarPubMed
Kebriaei, P, Detry, MA, Giralt, S, Carrasco-Yalan, A, Anagnostopoulos, A, Couriel, D, et al. Long-term follow-up of allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning for patients with chronic myeloid leukemia. Blood. 2007;110:3456–62.Google Scholar
Druker, BJ1, Talpaz, M, Resta, DJ, Peng, B, Buchdunger, E, Ford, JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.Google Scholar
Goldman, JM. Chronic myeloid leukemia: a historical perspective. Semin Hematol. 2010;47: 302–11.Google Scholar
Deininger, M, O’Brien, SG, Guilhot, F, Goldman, JM, Hochhaus, A, Hughes, TP et al. International randomized study of interferon vs STI571 (IRIS) 8-year follow up: sustained survival and low risk for progression or events in patients with newly diagnosed chronic myeloid leukemia in chronic phase treated with imatinib [abstract]. Blood (ASH Annual Meeting Abstracts). 2009;114:Abstract 1126.Google Scholar
Sasaki, K, Strom, S, O’Brien, S. Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haem. 2015;2:186–93.Google ScholarPubMed
Bower, H, Bjorkholm, M, Dickman, P, Hoglund, M, Lambert, P, Andersson, TML. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. JCO. 2016;34:2851–7.Google Scholar
Baccarani, M, Saglio, G, Goldman, J, Hochhaus, A, Simonsson, B, Appelbaum, F, et al. European LeukemiaNet. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2006;108:18091820.CrossRefGoogle Scholar
Baccarani, M, Deininger, MW, Rosti, G, Hochhaus, A, Soverini, S, Apperley, JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.Google Scholar
Hanfstein, B, Müller, MC, Hehlmann, R, Erben, P, Lauseker, M, Fabarius, A, et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia. 2012;26:2096–102.CrossRefGoogle ScholarPubMed
Marin, D, Ibrahim, AR, Lucas, C, Gerrard, G, Wang, L, Szydlo, RM, et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30:232–8.Google Scholar
Cortes, JE, Hochhaus, A, Kim, D, Shah, NP, Mayer, J, Rowlings, P, et al. Four-year (yr) follow-up of patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) receiving dasatinib or imatinib: efficacy based on early response. Blood (ASH Annual Meeting Abstracts). 2013; 122:Abstract 653.Google Scholar
Saglio, G, Hochhaus, A, Hughes, TP, Clark, RE, Nakamae, H, Kim, D, et al. ENESTnd update: nilotinib (NIL) vs imatinib (IM) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) and the impact of early molecular response (EMR) and Sokal risk at diagnosis on long-term outcomes. Blood (ASH Annual Meeting Abstracts). 2013; 122:Abstract 632.Google Scholar
Brümmendorf, TH, Cortes, JE, de Souza, CA, Guilhot, F, Duvillié, L, Pavlov, D, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2014;Sep 8. doi: 10.1111/bjh.13108. [Epub ahead of print]Google Scholar
Mahon, FX, Réa, D, Guilhot, J, Guilhot, F, Huguet, F, Nicolini, F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11:1029–35.CrossRefGoogle Scholar
Ross, DM, Branford, S, Seymour, JF, Schwarer, AP, Arthur, C, Yeung, DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122:515–22.Google Scholar
Goldman, J, Gordon, M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma. 2006;47:17.Google Scholar
Gratwohl, A, Brand, R, Apperley, J, Crawley, C, Ruutu, T, Corradini, P, et al. Allogeneic hematopoietic stem cell transplantation for chronic myeloid leukemia in Europe 2006: transplant activity, long-term data and current results. An analysis by the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2006;91:513–21.Google Scholar
Gratwohl, A, Heim, D. Current role of stem cell transplantation in chronic myeloid leukaemia. Best Pract Res Clin Haematol. 2009;22:431–43.Google Scholar
Pavlu, J, Szydlo, RM, Goldman, JM, Apperley, JF. Three decades of transplantation for chronic myeloid leukemia: what have we learned? Blood. 2011;117:755–63.Google Scholar
Saussele, S, Lauseker, M, Gratwohl, A, Beelen, DW, Bunjes, D, Schwerdtfeger, R, et al. Allogeneic hematopoietic stem cell transplantation (allo SCT) for chronic myeloid leukemia in the imatinib era: evaluation of its impact within a subgroup of the randomized German CML Study IV. Blood. 2010;115:1880–5.CrossRefGoogle ScholarPubMed
Soverini, S, Hochhaus, A, Nicolini, FE, Gruber, F, Lange, T, Saglio, G, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–15.Google Scholar
Ernst, T, La Rosée, P, Müller, MC, Hochhaus, A. BCR-ABL mutations in chronic myeloid leukemia. Hematol Oncol Clin North Am. 2011;25:9971008.Google Scholar
Nicolini, FE1, Basak, GW, Soverini, S, Martinelli, G, Mauro, MJ, Müller, MC, et al. Allogeneic stem cell transplantation for patients harboring T315I BCR-ABL mutated leukemias. Blood. 2011;118:5697–700.CrossRefGoogle ScholarPubMed
Cortes, JE, Kim, DW, Pinilla-Ibarz, J, le Coutre, P, Paquette, R, Chuah, C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.Google Scholar
Shah, NP, Guilhot, F, Cortes, JE, Schiffer, CA, le Coutre, P, Brümmendorf, TH, et al. Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood. 2014;123:2317–24.Google Scholar
Giles, FJ, le Coutre, PD, Pinilla-Ibarz, J, Larson, RA, Gattermann, N, Ottmann, OG et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia. 2013;27:107–12.Google Scholar
Kim, DD, Lee, H, Kamel-Reid, S, Lipton, JH. BCR-ABL1 transcript at 3 months predicts long-term outcomes following second generation tyrosine kinase inhibitor therapy in the patients with chronic myeloid leukaemia in chronic phase who failed Imatinib. Br J Haematol. 2013;160:630–9.Google Scholar
Sokal, JE, Cox, EB, Baccarani, M, Tura, S, Gomez, GA, Robertson, JE, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63:789–99.Google Scholar
Pemmaraju, N, Kantarjian, H, Shan, J, Jabbour, E, Quintas-Cardama, A, Verstovsek, S, et al. Analysis of outcomes in adolescents and young adults with chronic myelogenous leukemia treated with upfront tyrosine kinase inhibitor therapy. Haematologica. 2012;97:1029–35.Google Scholar
Kalmanti, L, Saussele, S, Lauseker, M, Proetel, U, Müller, MC, Hanfstein, B, et al. Younger patients with chronic myeloid leukemia do well in spite of poor prognostic indicators: results from the randomized CML study IV. Ann Hematol. 2014;93:7180.Google Scholar
Hehlmann, R. How I treat CML blast crisis. Blood. 2012;120:737–47.Google Scholar
Jiang, H, Xu, LP, Liu, DH, Liu, KY, Chen, SS, Jiang, B, et al. Allogeneic hematopoietic SCT in combination with tyrosine kinase inhibitor treatment compared with TKI treatment alone in CML blast crisis. Bone Marrow Transplant. 2014;49:1146–54.CrossRefGoogle ScholarPubMed
Khoury, HJ, Kukreja, M, Goldman, JM, Wang, T, Halter, J, Arora, M, et al. Prognostic factors for outcomes in allogeneic transplantation for CML in the imatinib era: a CIBMTR analysis. Bone Marrow Transplant. 2012;47:810–6.Google Scholar
Kantarjian, HM, Cortes, J, OíBrien, S, Giles, FJ, Albitar, M, Rios, MB et al. Imatinib mesylate (STI571) therapy for Philadelphia chromosome-positive chronic myelogenous leukemia in blast phase. Blood. 2002;99:3547–53.CrossRefGoogle ScholarPubMed
Fruehauf, S, Topaly, J, Buss, EC, et al. Imatinib combined with mitoxantrone/etoposide and cytarabine is an effective induction therapy for patients with chronic myeloid leukemia in myeloid blast crisis. Cancer. 2007;109:1543–9.Google Scholar
Oki, Y, Kantarjian, HM, Gharibyan, V, et al. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer. 2007;109:899906.Google Scholar
Milojkovic, D, Ibrahim, A, Reid, A, Foroni, L, Apperley, J, Marin, D. Efficacy of combining dasatinib and FLAG-IDA for patients with chronic myeloid leukemia in blastic transformation. Haematologica. 2012;97:473–4.Google Scholar
Hochhaus, A, Giles, F, Apperley, J, Ossenkoppele, G, Wang, J , Gallagher, NJ, et al. Nilotinib in chronic myeloid leukemia patients in accelerated phase (cml-ap) with imatinib resistance or intolerance: 24-month follow-up results of a phase 2 study. Haematologica 2009;94(Suppl 2):256 (abstract 0631).Google Scholar
Jiang, Q, Xu, LP, Liu, DH, Liu, KY, Chen, SS, Jiang, B, et al Imatinib mesylate versus allogeneic hematopoietic stem cell transplantation for patients with chronic myelogenous leukemia in the accelerated phase. Blood. 2011;117:3032–40.Google Scholar
Ohanian, M, Kantarjian, HM, Quintas-Cardama, A, Jabbour, E, Abruzzo, L, Verstovsek, S, et al. Tyrosine kinase inhibitors as initial therapy for patients with chronic myeloid leukemia in accelerated phase. Clin Lymphoma Myeloma Leuk. 2014;14:155–62.Google Scholar
Gratwohl, A, Hermans, J, Goldman, JM, Arcese, W, Carreras, E, Devergie, A, et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet. 1998;352:1087–92.Google Scholar
Gratwohl, A, Stern, M, Brand, R, Apperley, J, Baldomero, H, de Witte, T, et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer. 2009;115:4715–26.Google Scholar
Milojkovic, D,Szydlo, D, Hoek, J, Beelen, D, Hamladji, R, Kyrcz-Krzemien, S, et al. Prognostic significance of EBMT score for chronic myeloid leukaemia patients in the era of tyrosine kinase inhibitor therapy: a retrospective study from the chronic malignancy working party of the european group for blood and marrow transplantation (EBMT). Bone Marrow Transplant. 2014;49:S34–5.Google Scholar
Sorror, ML, Maris, MB, Storb, R, Baron, F, Sandmaier, BM, Maloney, DG, et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 2005;106:2912–9.Google Scholar
Sorror, M, Storer, B, Sandmaier, BM, Maloney, DG, Chauncey, TR, Langston, A, et al. Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer. 2008;112:19922001.Google Scholar
Zipperer, E, Pelz, D, Nachtkamp, K, Kuendgen, A, Strupp, C, Gattermann, N, et al. The hematopoietic stem cell transplantation comorbidity index is of prognostic relevance for patients with myelodysplastic syndrome. Haematologica. 2009;94:729–32.CrossRefGoogle ScholarPubMed
Pavlů, J, Kew, AK, Taylor-Roberts, B, Auner, HW, Marin, D, Olavarria, E et al.Optimizing patient selection for myeloablative allogeneic hematopoietic cell transplantation in chronic myeloid leukemia in chronic phase. Blood. 2010;115:4018–20.Google Scholar
Zaucha, JM, Prejzner, W, Giebel, S, Gooley, TA, Szatkowski, D, Kałwak, K, et al. Imatinib therapy prior to myeloablative allogeneic stem cell transplantation. Bone Marrow Transplant. 2005;36:417–24.Google Scholar
Deininger, M, Schleuning, M, Greinix, H, Sayer, HG, Fischer, T, Martinez, J, et al. The effect of prior exposure to imatinib on transplant-related mortality. Haematologica. 2006;91:452–9.Google Scholar
Lee, SJ, Kukreja, M, Wang, T, Giralt, SA, Szer, J, Arora, M, et al. Impact of prior imatinib mesylate on the outcome of hematopoietic cell transplantation for chronic myeloid leukemia. Blood. 2008;112:3500–7.Google Scholar
Warlick, E, Ahn, KW, Pedersen, TL, Artz, A, de Lima, M, Pulsipher, M, et al. Reduced intensity conditioning is superior to nonmyeloablative conditioning for older chronic myelogenous leukemia patients undergoing hematopoietic cell transplant during the tyrosine kinase inhibitor era. Blood. 2012;119:4083–90.Google Scholar
Uzunel, M, Mattsson, J, Brune, M, Johansson, JE, Aschan, J, Ringdén, O.et al. Kinetics of minimal residual disease and chimerism in patients with chronic myeloid leukemia after nonmyeloablative conditioning and allogeneic stem cell transplantation. Blood. 2003;101:469–72.Google Scholar
Anasetti, C, Logan, BR, Lee, SJ, Waller, EK, Weisdorf, DJ, Wingard, JR, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96.Google Scholar
Krejci, M, Mayer, J, Doubek, M, Brychtova, Y, Pospisil, Z, Racil, Z, et al. Clinical outcomes and direct hospital costs of reduced-intensity allogeneic transplantation in chronic myeloid leukemia. Bone Marrow Transplant. 2006;38:483–91.Google Scholar
Basak, GW, de Wreede, LC, van Biezen, A, Wiktor-Jedrzejczak, W, Halaburda, K, Schmid, C et al. Donor lymphocyte infusions for the treatment of chronic myeloid leukemia relapse following peripheral blood or bone marrow stem cell transplantation. Bone Marrow Transplant. 2013;48:837–42.Google Scholar
Eapen, M, Logan, BR, Appelbaum, F, Antin, A, Anasetti, C, Couriel, DR, et al. Long-term survival after transplantation of unrelated donor peripheral blood or bone marrow hematopoietic cells for hematologic malignancy. Biol Blood Marrow Transplant. 2015;21:55–9.Google Scholar
Sehn, LH1, Alyea, EP, Weller, E, Canning, C, Lee, S, Ritz, J, et al. Comparative outcomes of T-cell-depleted and non-T-cell-depleted allogeneic bone marrow transplantation for chronic myelogenous leukemia: impact of donor lymphocyte infusion. J Clin Oncol. 1999;17:561–8.Google Scholar
Socié, G, Schmoor, C, Bethge, WA, Ottinger, HD, Stelljes, M, Zander, AR, et al. Chronic graft-versus-host disease: long-term results from a randomized trial on graft-versus-host disease prophylaxis with or without anti-T-cell globulin ATG-Fresenius. Blood. 2011;117:6375–82.Google Scholar
Lin, F, van Rhee, F, Goldman, JM, Cross, NC. Kinetics of increasing BCR-ABL transcript numbers in chronic myeloid leukemia patients who relapse after bone marrow transplantation. Blood. 1996;87:4473–8.Google Scholar
Krejci, M, Mayer, J, Doubek, M, Brychtova, Y, Pospisil, Z, Racil, Z, et al. Clinical outcomes and direct hospital costs of reduced-intensity allogeneic transplantation in chronic myeloid leukemia. Bone Marrow Transplant. 2006;38:483–91.CrossRefGoogle ScholarPubMed
Dazzi, F, Szydlo, RM, Craddock, C, Cross, NC, Kaeda, J, Chase, A, et al. Comparison of single-dose and escalating-dose regimens of donor lymphocyte infusion for relapse after allografting for chronic myeloid leukemia. Blood. 2000;95:6771.Google Scholar
Innes, AJ, Beattie, R, Sergeant, R, Damaj, G, Foroni, L, Marin, D, et al. Escalating-dose HLA-mismatched DLI is safe for the treatment of leukaemia relapse following alemtuzumab-based myeloablative allo-SCT. Bone Marrow Transplant. 2013;48:1324–8.Google Scholar
Innes, AJ, Lurkins, J, Szydlo, R, Guerra, A, Milojkovic, D, Pavlu, J et al. The majority of patients receiving donor lymphocyte infusions for relapsed chronic myeloid leukemia remain PCR positive despite maintaining long-term remission. Blood. 2011:118: Abstract 4103.Google Scholar
Zeidner, JF1, Zahurak, M, Rosner, GL, Gocke, CD, Jones, RJ, Smith, BD. The evolution of treatment strategies for patients with chronic myeloid leukemia relapsing after allogeneic bone marrow transplant: can tyrosine kinase inhibitors replace donor lymphocyte infusions? Leuk Lymphoma. 2015;56:128–34.Google Scholar

References

Tefferi, A. Pathogenesis of myelofibrosis with myeloid metaplasia. J Clin Oncol. 2005;23(33):8520–30.Google Scholar
Mesa, RA, Verstovsek, S, Cervantes, F, Barosi, G, Reilly, JT, Dupriez, B, et al. Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): Consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk Res. 2007;31(6):737–40.CrossRefGoogle Scholar
Cervantes, F, Dupriez, B, Pereira, A, Passamont, F, Reilly, JT, Morra, E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901.Google Scholar
Passamonti, F, Cervantes, F, Vannucchi, AM, Morra, E, Rumi, E, Pereira, A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–08.Google Scholar
Caramazza, D, Begna, KH, Gangat, N, Vaidya, R, Siragusa, S, Van Dyke, DL, et al. Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients. Leukemia. 2011;25(1):82–8.Google Scholar
Tefferi, A, Siragusa, S, Hussein, K, Schwager, SM, Hanson, CA, Pardanani, A, et al. Transfusion-dependency at presentation and its acquisition in the first year of diagnosis are both equally detrimental for survival in primary myelofibrosis—prognostic relevance is independent of IPSS or karyotype. Am J Hematol. 2010;85(1):14–7.Google Scholar
Gangat, N, Caramazza, D, Vaidya, R, George, G, Begna, K, Schwager, S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7.CrossRefGoogle Scholar
Guglielmelli, P, Lasho, TL, Rotunno, G, Score, J, Mannarelli, C, Pancrazzi, A, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804–10.Google Scholar
Kerbauy, DM, Gooley, TA, Sale, GE, Flowers, ME, Doney, KC, Georges, GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant. 2007;13(3):355–65.Google Scholar
Kralovics, R, Passamonti, F, Buser, AS, Teo, SS, Tiedt, R, Passweg, JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.Google Scholar
James, C, Ugo, V, Le Couedic, JP, Staerk, J, Delhommeau, F, Lacout, C, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.Google Scholar
Verstovsek, S, Kantarjian, H, Mesa, R, Pardanani, AD, Cortes-Franco, J, Thomas, DA, et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Eng J Med. 2010;363(12):1117–27.Google Scholar
Harrison, C, Kiladjian, JJ, Al-Ali, HK, Gisslinger, H, Waltzman, R, Stabovskaya, V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Eng J Med. 2012;366(9):787–98.Google Scholar
Verstovsek, S, Mesa, RA, Gotlib, JR, Levy, RS, Gupta, V, DiPersio, JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Eng J Med. 2012;366(9):799807.Google Scholar
Cervantes, F, Vannucchi, AM, Kiladjian, JJ, Al-Ali, HK, Sirulnik, A, Stalbovskaya, V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 2013;122(25):4057–3.Google Scholar
Verstovsek, S, Mesa, RA, Gotlib, J, Levy, RS, Gupta, V, DiPersio, JF, et al. Efficacy, safety and survival with ruxolitinib treatment in patients with myelofibrosis: results of a median 2-year follow-up of COMFORT-I. Haematologica. 2013;98(12):1865–71.Google Scholar
Passamonti, F, Maffioli, M, Cervantes, F, Vannucchi, AM, Morra, E, Barbui, T, et al. Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood. 2014;123(12):1833–5.Google Scholar
Dokal, I, Jones, L, Deenmamode, M, Lewis, SM, Goldman, JM. Allogeneic bone marrow transplantation for primary myelofibrosis. Br J Haematol. 1989;71(1):158–60.Google Scholar
Creemers, GJ, Lowenberg, B, Hagenbeek, A. Allogeneic bone marrow transplantation for primary myelofibrosis. Br J Haematol. 1992;82(4):772–3.Google Scholar
Guardiola, P, Anderson, JE, Bandini, G, Cervantes, F, Runde, V, Arcese, W, et al. Allogeneic stem cell transplantation for agnogenic myeloid metaplasia: a European Group for Blood and Marrow Transplantation, Société Franҁaise de Greffe de Moelle, Gruppo Italiano per il Trapianto del Midollo Osseo, and Fred Hutchinson Cancer Research Center Collaborative Study. Blood. 1999;93(9):2831–8.Google Scholar
Deeg, HJ, Gooley, TA, Flowers, ME, Sale, GE, Slattery, JT, Anasetti, C, et al. Allogeneic hematopoietic stem cell transplantation for myelofibrosis. Blood. 2003;102(12):3912–18.Google Scholar
Daly, A, Song, K, Nevill, T, Nantel, S, Toze, C, Hogge, D, et al. Stem cell transplantation for myelofibrosis: a report from two Canadian centers. Bone Marrow Transplant. 2003;32(1):3540.Google Scholar
Byrne, JL, Beshti, H, Clark, D, Ellis, I, Haynes, AP, Das-Gupta, E, et al. Induction of remission after donor leucocyte infusion for the treatment of relapsed chronic idiopathic myelofibrosis following allogeneic transplantation: evidence for a ‘graft vs. myelofibrosis’ effect. Br J Haematol. 2000;108(2):430–3.Google Scholar
Cervantes, F, Rovira, M, Urbano-Ispizua, A, Rozman, M, Carreras, E, Montserrat, E. Complete remission of idiopathic myelofibrosis following donor lymphocyte infusion after failure of allogeneic transplantation: demonstration of a graft-versus-myelofibrosis effect. Bone Marrow Transplant. 2000;26(6):697–9.Google Scholar
Hessling, J, Kröger, N, Werner, M, Zabelina, T, Hansen, A, Kordes, U, et al. Dose-reduced conditioning regimen followed by allogeneic stem cell transplantation in patients with myelofibrosis with myeloid metaplasia. Br J Haematol. 2002;119(3):769–72.Google Scholar
Devine, SM, Hoffman, R, Verma, A, Shah, R, Bradlow, BA, Stock, W, et al. Allogeneic blood cell transplantation following reduced-intensity conditioning is effective therapy for older patients with myelofibrosis with myeloid metaplasia. Blood. 2002;99(6):2255–8.CrossRefGoogle ScholarPubMed
Rondelli, D, Barosi, G, Bacigalupo, A, Prchal, U, Alessandrino, EP, Spivak, JL, et al. Allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk patients with myelofibrosis with myeloid metaplasia. Blood. 2005;105(10):4115–9.Google Scholar
Kröger, N, Zabelina, T, Schieder, H, Panse, J, Ayuk, F, Stute, N, et al. Pilot study of reduced-intensity conditioning followed by allogeneic stem cell transplantation from related and unrelated donors in patients with myelofibrosis. Br J Haematol. 2005;128(5):690–7.Google Scholar
Kröger, N, Holler, E, Kobbe, G, Bornhäuser, M, Schwerdtfeger, R, Baurmann, H, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70.Google Scholar
Alchalby, H, Zabelina, T, Wollf, D, Kobbe, G, Bornhäuser, M, Baurmann, H, et al. Long Term Follow-up of the Prospective Multicenter Study of reduced-Intensity Allogeneic Stem Cell Transplantation for Primary or Post ET/PV Myelofibrosis. Blood (ASH Annual Meeting Abstracts). 2011;118: Abstract 1019.Google Scholar
Rondelli, D, Goldberg, J, Isola, L, Price, LS, Shore, TB, Boyer, M, et al. MPD-RC 101 prospective study of reduced intensity allogeneic hematopoietic stem cell transplantation in patients with myelofibrosis. Blood. 2014;124(7):1183–91.Google Scholar
Bacigalupo, A, Soraru, M, Dominietto, A, Pozzi, S, Geroldi, S, Van Lint, MT, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen, and donor type. Bone Marrow Transplant. 2010;45(3): 458–63.CrossRefGoogle ScholarPubMed
Gupta, V, Malone, AK, Hari, PN, Ahn, KW, Hu, ZH, Gale, RP, et al. Reduced-intensity hematopoietic cell transplantation for patients with primary myelofibrosis: a cohort analysis from the center for international blood and marrow transplant research. Biol Blood Marrow Transplant. 2014;20(1): 8997.Google Scholar
Stewart, WA, Pearce, R, Kirkland, KE, Bloor, A, Thomson, K, Apperley, J, et al. The role of allogeneic SCT in primary myelofibrosis: a British Society for Blood and Marrow Transplantation study. Bone Marrow Transplant. 2010;45(11):1587–93.Google Scholar
Ballen, KK, Shrestha, A, Sobocinski, KA, Zhang, MJ, Bashey, A, Bolwell, BJ, et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2010;16(3):358–67.Google Scholar
Robin, M, Tabrizi, R, Mohty, M, Furst, S, Michallet, M, Bay, JO, et al. Allogeneic haematopoietic stem cell transplantation for myelofibrosis: a report of the Société Franҁaise de Greffe de Moelle et de Thérapie Cellulaire (SFGM-TC). Br J Haematol. 2011;152(3):331–9.Google Scholar
Gupta, V, Kröger, N, Aschan, J, Xu, W, Leber, B, Dalley, C, et al. A retrospective comparison of conventional intensity conditioning and reduced-intensity conditioning for allogeneic hematopoietic cell transplantation in myelofibrosis. Bone Marrow Transplant. 2009;44(5):317–20.Google Scholar
Abelsson, J, Merup, M, Birgegard, G, Weis Bjerrum, O, Brinch, L, Brune, M, et al. The outcome of allo-HSCT for 92 patients with myelofibrosis in the Nordic countries. Bone Marrow Transplant. 2012;47(3):380–6.Google Scholar
Ditschkowski, M, Elmaagacli, AH, Trenschel, R, Gromke, T, Steckel, NK, Koldehoff, M, et al. Dynamic International Prognostic Scoring scores, pre-transplant therapy and chronic graft-versus-host disease determine outcome after allogeneic hematopoietic stem cell transplantation for myelofibrosis. Haematologica. 2012;97(10):1574–81.Google Scholar
Scott, BL, Gooley, TA, Sorror, ML, Rezvani, AR, Linenberger, ML, Grim, J, et al. The Dynamic International Prognostic Scoring System for myelofibrosis predicts outcomes after hematopoietic cell transplantation. Blood. 2012;119(11): 2657–64.CrossRefGoogle ScholarPubMed
Nivison-Smith, I, Dodds, AJ, Butler, J, Bradstock, KF, Ma, DD, Simpson, JM, et al. Allogeneic hematopoietic cell transplantation for chronic myelofibrosis in Australia and New Zealand: older recipients receiving myeloablative conditioning at increased mortality risk. Biol Blood Marrow Transplant. 2012;18(2):302–8.Google Scholar
Patriarca, F, Bacigalupo, A, Sperotto, A, Isola, M, Soldano, F, Bruno, B, et al. Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica. 2008;93(10):1514–22.Google Scholar
Kröger, N, Alchalby, H, Klyuchnnikov, E, Badbaran, A, Hildebrandt, Y, Ayuk, F, et al. JAK2-V617F-triggered preemptive and salvage adoptive immunotherapy with donor-lymphocyte infusion in patients with myelofibrosis after allogeneic stem cell transplantation. Blood. 2009;113(8):1866–8.Google Scholar
Vainchenker, W, Delhommeau, F, Constantinescu, SN, Bernard, OA. New mutations of myeloproliferative neoplasms. Blood. 2011;118(7):1723–35.Google Scholar
Klampfl, T, Gisslinger, H, Harutyunyan, AS, Nivarthi, H, Rumi, E, Milosevic, JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.Google Scholar
Nangalia, J, Massie, CE, Baxter, EJ, Nice, FL, Gundem, G, Wedge, DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.Google Scholar
Klyuchnikov, E, Holler, E, Bornhäuser, M, Kobbe, G, Nagler, A, Shimoni, A, et al. Donor lymphocyte infusions and second transplantation as salvage treatment for relapsed myelofibrosis after reduced-intensity allografting. Br J Haematol. 2012;159(2):172–81.Google Scholar
Barbui, T, Barosi, G, Birgegard, G, Cervantes, F, Finazzi, G, Griesshammer, M, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29(6):761–70.CrossRefGoogle ScholarPubMed
Alchalby, H, Yunus, DR, Zabelina, T, Kobbe, G, Holler, E, Bornhäuser, M, et al. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol. 2012;157(1):7585.CrossRefGoogle ScholarPubMed
Alchalby, H, Zabelina, T, Stübig, T, van Biezen, A, Bornhäuser, M, Di Bartolomeo, M, et al. Allogeneic stem cell transplantation for myelofibrosis with leukemic transformation: a study from the Myeloproliferative Neoplasm Subcommittee of the CMWP of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2014;20(2):279–81.Google Scholar
Cahu, X, Chevallier, P, Clavert, A, Suarez, F, Michallet, M, Vincent, L, et al. Allo-SCT for Philadelphia-negative myeloproliferativer neoplasms in blast phase: a study from the Societe Franҁaise de Greffe de Moelle et de Therapie Cellulaire (SFGM-TC). Bone Marrow Transplant. 2014;49(6):756–60.Google Scholar
Lussana, F, Rimbaldi, A, Finazzi, MC, van Biezen, A, Scholten, M, Oldani, E, et al. Allogeneic hematopoietic stem cell transplantation in patients with polycythemia vera or essential thrombocythemia transformed to myelofibrosis or acute myeloid leukemia: a report from the MPN Subcommittee of the Chronic Malignancies Working Party of the European Group for Blood and Marrow Transplantation. Haematologica. 2014;99(5):916–21.Google Scholar
Alchalby, H, Badbaran, A, Zabelina, T, Kobbe, G, Hahn, J, Wolff, D, et al. Impact of JAK2V617F mutation status, alelle burden, and clearance after allogeneic stem cell transplantation for myelofibrosis. Blood. 2010;116(18):3572–81.Google Scholar
Panagiota, V, Thol, F, Markus, B, Fehse, B, Alchalby, H, Badbaran, A, et al. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Leukemia. 2014;28(7):1552–5.CrossRefGoogle ScholarPubMed
Alchalby, H, Lioznov, M, Fritzsche-Friedland, U, Badbaran, A, Zabelina, T, Bacher, U, et al. Circulating CD34(+) cells as prognostic and follow-up marker in patients with myelofibrosis undergoing allo-SCT. Bone Marrow Transplant. 2012;47(1):143–5.Google Scholar
Kerbauy, DM, Gooley, TA, Sale, GE, Flowers, ME, Doney, KC, Georges, GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia very, and essential thrombocythemia. Biol Blood Marrow Transplant. 2007;13(3):355–65.Google Scholar
Samuelson, S, Sandmaier, BM, Heslop, HE, Popat, U, Carrum, G, Champlin, RE, et al. Allogeneic haematopoietic cell transplantation for myelofibrosis in 30 patients 60–78 years of age. Br J Haematol. 2011;153(1):7682.Google Scholar
Robin, M, Giannotti, F, Deconinck, E, Mohty, M, Michallet, M, Sanz, G, et al. Unrelated cord blood transplantation for patients with primary or secondary myelofibrosis. Biol Blood Marrow Transplant. 2014;20(11):1841–6.Google Scholar
Ciurea, SO, Sadegi, B, Wilbur, A, Alagiozian-Angelova, V, Gaitonde, S, Dobogai, LC, et al. Effects of extensive splenomegaly in patients with myelofibrosis undergoing a reduced intensity allogeneic stem cell transplantation. Br J Haematol. 2008;141(1):80–3.Google Scholar
Mesa, RA, Nagorney, DS, Schwager, S, Allred, J, Tefferi, A. Palliative goals, patient selection, and perioperative platelet management: outcomes and lessons from 3 decades of splenectomy for myelofibrosis with myeloid metaplasia at the Mayo Clinic. Cancer. 2006;107(2):361–70.Google Scholar
Stübig, T, Alchalby, H, Ditschkowski, M, Wolf, D, Wulf, G, Zabelina, T, et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia. 2014;28(8):1736–8.Google Scholar
Tefferi, A, Constantinescu, SN. Introduction to ‘A special spotlight review series on BCR-ABL-negative myeloproliferative neoplasms’. Leukemia. 2008;22(1):313.Google Scholar
Tefferi, A. Myelofibrosis with myeloid metaplasia. N Engl J Med. 2000;342(17):1255–66.Google Scholar
Chagraoui, H, Komura, E, Tulliez, M, Giraudier, S, Vainchenker, W, Wendling, F. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100(10):3495–503.Google Scholar
Le Bousse-Kerdilès, MC, Martyré, MC, Samson, M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review. Eur Cytokine Netw. 2008;19(2):6980.Google Scholar
Thiele, J, Kvasnicka, HM. Grade of bone marrow fibrosis is associated with relevant hematological findings– a clinicopathological study on 865 patients with chronic idiopathic myelofibrosis. Ann Hematol. 2006;85(4):226–32.Google Scholar
Barosi, G, Rosti, V, Bonetti, E, Campanelli, R, Carolei, A, Catarsi, P, et al. Evidence that prefibrotic myelofibrosis is aligned along a clinical and biological continuum featuring primary myelofibrosis. PLOS One. 2012;7:e35631Google Scholar
Gianelli, U, Vener, C, Bossi, A, et al. The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mod Pathol. 2012;25(9):1193–202.Google Scholar
Nazha, A, Estrov, Z, Cortes, J, Bueso-Ramos, CE, Kantarjian, H, Verstovsek, S. Prognostic implications and clinical characteristics associated with bone marrow fibrosis. Leuk Lymphoma. 2013;54(11):2537–9.Google Scholar
Strasser-Weippl, K, Steurer, M, Kees, M, Agustin, F, Tzankov, A, Dirnhofer, S, et al. Age and hemoglobin level emerge as most important clinical prognostic parameters in patients with osteomyelofibrosis: introduction of a simplified prognostic score. Leuk Lymphoma. 2006;47(3):441–50.Google Scholar
Anger, B, Seidler, R, Haug, U, Popp, C, Heimpel, H. Idiopathic myelofibrosis: a retrospective study of 103 patients. Haematologica. 1990;75(3): 226–34.Google Scholar
Thiele, J, Kvasnicka, HM, Dietrich, H, Stein, G, Hann, M, Kaminski, A, et al. Dynamics of bone marrow changes in patients with chronic idiopathic myelofibrosis following allogeneic stem cell transplantation. Histol Histopathol. 2005;20(3):879–89.Google Scholar
Silver, RT, Vadris, K, Goldman, JJ. Recombinant interferon-α may retard progression of early primary myelofibrosis: a preliminary report. Blood. 2011;117(24):6669–72.Google Scholar
Tefferi, A, Verstovsek, S, Barosi, G, Passamonti, F, Roboz, GJ, Gisslinger, H, et al. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol. 2009;27(27):4563–9.Google Scholar
Kvasnicka, HM, Thiele, J, Bueso-Ramos, CE, Hou, K, Cortes, JE, Kantarjian, HM, et al. Exploratory analysis of the effect of ruxolitinib on bone marrow morphology in patients with myelofibrosis. (ASCO Annual Meeting Abstract). J Clin Oncol. 2013;31(15):7030.Google Scholar
Kröger, N, Zabelina, T, Alchalby, H, Stübig, T, Wolschke, C, Ayuk, F, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20(6):812–5.Google Scholar
Verstovsek, S, Mesa, RA, Gotlib, JR, Levy, RS, Gupta, V, DiPersio, JF, et al. Results of COMFORT-I, a randomized double-blind phase III trial of JAK1/2 inhibitor INCB18424 (424) versus placebo (PB) for patients with myelofibrosis (MF) (ASCO Annual Meeting Abstract). J Clin Oncol. 2011;29(15):6500.Google Scholar
Harrison, CN, Kiladijan, H, Al-Ali, HK, Gisslinger, H, Waltzman, RJ, Stalbovskaya, V, et al. Results of a randomized study of the JAK inhibitor INC424 compared with best available therapy (BAT) in primary myelofibrosis (PMF), post-polycythemia vera-myelofibrosis (PPV-MF) or post-essential thrombocythemia myelofibrosis (PET-MF). (ASCO Annual Meeting Abstract). J Clin Oncol. 2011;29(15): LBA6501.Google Scholar
Spoerl, S, Mathew, NR, Bscheider, M, Schmitt-Graeff, A, Chen, S, Mueller, T, et al. Activity of therapeutic JAK ½ blockade in graft-versus-host disease. Blood. 2014;123(24):3832–42.Google Scholar
Jaekel, N, Behre, G, Behning, A, Wickenhauser, C, Lange, T, Niederwieser, D, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant. 2014;49(2):179–84.Google Scholar
Robin, M, Francois, S, Huynh, A, Cassimat, B, Bay, JO, Cornillon, J, et al. Ruxolitinib before allogeneic hematopoietic stem cell transplantation (HSCT) in patients with myelofibrosis: a preliminary descriptive report of the JAK ALLO study, a phase II trial sponsored by Goelams-FIM in collaboration with the Sfgmtc. Blood. 2013;122(21):abstract 306.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×