Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T13:07:27.544Z Has data issue: false hasContentIssue false

13 - Structure-based drug design case study: p38

from PART III - APPLICATIONS TO DRUG DISCOVERY

Published online by Cambridge University Press:  06 July 2010

Kenneth M. Merz, Jr
Affiliation:
University of Florida
Dagmar Ringe
Affiliation:
Brandeis University, Massachusetts
Charles H. Reynolds
Affiliation:
Johnson & Johnson Pharmaceutical Research & Development
Get access

Summary

INTRODUCTION

The overproduction of cytokines has been implicated in a wide variety of inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, osteoporosis, Alzheimer's disease, and congestive heart failure. The ability of p38 mitogen-activated protein kinase (p38 MAPK) to regulate the release and activity of multiple pro-inflammatory cytokines has attracted the interest of numerous pharmaceutical companies and independent researchers during the past decade or so. Since its initial discovery in 1994 as a potential molecular target for a novel class of cytokine suppressive inhibitors (SB-203580), more than 150 patent applications from at least thirty pharmaceutical companies have been published, all claiming novel p38 inhibitors. Four distinct isoforms of p38 MAPK are known: p38α and p38β are widely expressed in eukaryotic cells, including endothelial and inflammatory cells; p38γ is found in skeletal muscle; and p38δ is predominantly found in the small intestine, kidneys, and lung tissue. Of these four isoforms, p38α has been the most studied and is believed to be the most physiologically relevant. Numerous reviews have been published that focus on both the biology and chemistry of p38 inhibitors. The focus of this chapter is an illustration of p38 inhibitor design guided by structural information obtained both from modeling and actual x-ray crystallographic data. Structure references with a “.pdb” suffix refer to those obtained from the Research Collaboratory for Structural Bioinformatics.

Type
Chapter
Information
Drug Design
Structure- and Ligand-Based Approaches
, pp. 197 - 208
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, J. C.; Laydon, J. T.; McDonnell, P. C.; Gallagher, T. F.; Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M. J.; Heyes, J. R.; Landvatter, S. W.; Strickler, J. E.; McLaughlin, M. M.; Siemens, I. R.; Fisher, S. M.; Livi, G. P.; White, J. R.; Adams, J. L.; Young, P. R.A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 1994, 372, 739–746Google Scholar
Hale, K. K.; Trollinger, D.; Rihanek, M.; Manthey, C. L.Differential expression and activation of p38 mitogen-activated protein kinase α, β, γ and δ in inflammatory cell lineagesJ. Immunol. 1999, 162, 4246–4252.Google Scholar
Lee, J. C.; Kassis, S.; Kumar, S.; Badger, A.; Adams, J. L.p38 mitogen-activated protein kinase inhibitors – mechanisms and therapeutic potentials. Pharmacol. Ther. 1999, 82, 389–397.Google Scholar
Chen, Z.; Gibson, T. B.; Robinson, F.; Silvestro, L.; Pearson, G.; Xu, B.-E.; Wright, A.; Vanderbilt, C.; Cobb, M. H.MAP kinases. Chem. Rev. 2001, 101, 2449–2476.Google Scholar
Dambach, D. M.Potential adverse effects associated with inhibition of p38. α/β MAP kinasesCurr. Top. Med. Chem. 2005, 5, 929–939.Google Scholar
Pearson, G.; Robinson, F.; Gibson, T. B.; Xu, B.-E.; Karandikar, M.; Berman, K.; Cobb, M. H.Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 2001, 22, 153–183.Google Scholar
Schieven, G. L.The biology of p38 kinase: a central role in inflammation. Curr. Top. Med. Chem. 2005, 5, 921–928.Google Scholar
Boehm, J. C.; Adams, J. L.New inhibitors of p38 kinase. Expert Opin. Ther. Pat. 2000, 10, 25–37.Google Scholar
Chakravarty, S.; Dugar, S.Inhibitors of p38a MAP kinase. Ann. Rep. Med. Chem. 2002, 37, 177–186.Google Scholar
Cirillo, P. F.; Pargellis, C.; Regan, J.The non-diaryl heterocycle class of p38 MAP kinase inhibitors. Curr. Top. Med. Chem. 2002, 2, 1021–1035.Google Scholar
Doweyko, A. M.; Wrobleski, S. T.A comparison of p38 inhibitor-protein structures. Am. Drug Discov. 2006, 1, 47–52.Google Scholar
Dumas, J.; Sibley, R.; Riedl, B.; Monahan, M. K.; Lee, W.; Lowinger, T. B.; Redman, A. M.; Johnson, J. S.; Kingery-Wood, J.; Scott, W. J.; Smith, R. A.; Bobko, M.; Schoenleber, R.; Ranges, G. E.; Housley, T. J.; Bhargava, A.; Wilhelm, S. M.; Shrikhande, A.Discovery of a new class of p38 kinase inhibitors. Bioorg. Med. Chem. Lett. 2000, 10, 2047–2050.Google Scholar
Dumas, J.; Smith, R. A.; Lowinger, T. B.Recent developments in the discovery of protein kinase inhibitors from the urea class. Curr. Opin. Drug Discov. Dev. 2004, 7, 600–616.Google Scholar
Hanson, G.Inhibitors of p38 kinase. Expert Opin. Ther. 1997, 7, 729–733.Google Scholar
Jackson, P. F.; Bullington, J. L.Pyridinylimidazole based p38 MAP kinase inhibitors. Curr. Top. Med. Chem. 2002, 2, 1011–1020.Google Scholar
Salituro, F. G.; Germann, U. A.; Wilson, K. P.; Benis, G. W.; Fox, T.; Su, M. S.-S.Inhibitors of p38 MAP kinase: therapeutic intervention in cytokine-mediated diseases. Curr. Med. Chem. 1999, 6, 807–823.Google Scholar
Wrobleski, S. T.; Doweyko, A. M.Structural comparison of p38 inhibitor-protein complexes: a review of recent p38 inhibitors having unique binding interactions. Curr. Top. Med. Chem. 2005, 5, 1005–1016.Google Scholar
Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E.The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242.Google Scholar
Lin, T. H.; Metzger, A.; Diller, D. J.; Desai, M.; Henderson, I.; Ahmed, G.; Kimble, E. F.; Quadros, E.; Webb, M. L.Discovery and characterization of triaminotriazine aniline amides as highly selective p38 kinase inhibitors. J. Pharmacol. Exp. Ther. 2006, 318, 495–502.Google Scholar
Leftheris, K.; Ahmed, G.; Chan, R.; Dyckman, A. J.; Hussain, Z.; Ho, K.; Hynes, J.; Letourneau, J.; Li, W.; Lin, S.; Metzger, A.; Moriarty, K. J.; Riviello, C.; Shimshock, Y.; Wen, J.; Wityak, J.; Wrobleski, S. T.; Wu, H.; Wu, J.; Desai, M.; Gillooly, K. M.; Lin, T. H.; Loo, D.; McIntyre, K. W.; Pitt, S.; Shen, D. R.; Shuster, D. J.; Zhang, R.; Diller, D.; Doweyko, A.; Sack, J.; Baldwin, J.; Barrish, J.; Dodd, J.; Henderson, I.; Kanner, S.; Schieven, G. L.; Webb, M.The discovery of orally active triaminotriazine aniline amides as inhibitors of p38 MAP kinaseJ. Med. Chem. 2004, 47, 6283–6291.Google Scholar
Chen, J. C.; Xu, S. L.; Wawrzak, Z.; Basarab, G. S.; Jordan, D. B.Structure-based design of potent inhibitors of scytalone dehydratase: displacement of a water molecule from the active site. Biochemistry 1998, 37, 17735–17744.Google Scholar
Wissner, A.; Berger, D. M.; Boschelli, D. H.; Floyd, B.; Greenberger, L. M.; Gruber, B. C.; Johnson, B. D.; Mamuya, N.; Nilakantan, R.; Reich, M. F.; Shen, R.; Tsou, H.-R.; Upeslacis, E.; Wang, Y. F.; Wu, B.; Ye, F.; Zhang, N.4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors. J. Med. Chem. 2000, 43, 3244–3256.Google Scholar
Liu, C.; Wrobleski, S. T.; Lin, J.; Ahmed, G.; Metzger, A.; Wityak, J.; Gillooly, K. M.; Shuster, D. J.; McIntyre, K. W.; Pitt, S.; Shen, D. R.; Zhang, R. F.; Zhang, H.; Doweyko, A. M.; Diller, D.; Henderson, I.; Barrish, J. C.; Dodd, J. H.; Schieven, G. L.; Leftheris, K.5-Cyanopyrimidine derivatives as a novel class of potent, selective, and orally active inhibitors of p38α MAP kinase. J. Med. Chem. 2005, 48, 6261–6270.Google Scholar
Hynes, J., Jr.; Dyckman, A. J.; Lin, S.; Wrobleski, S. T.; Wu, H.; Gillooly, K. M.; Kanner, S. B.; Lonial, H.; Loo, D.; McIntyre, K. W.; Pitt, S.; Shen, D. R.; Shuster, D. J.; Yang, X.; Zhang, R.; Behnia, K.; Zhang, H.; Marathe, P. H.; Doweyko, A. M.; Tokarski, J. S.; Sack, J. S.; Pokross, M.; Kiefer, S. E.; Newitt, J. A.; Barrish, J. C.; Dodd, J.; Schieven, G. L.; Leftheris, K.Design, synthesis, and anti-inflammatory properties of orally active 4-(phenylamino)-pyrrolo[2,1-f][1,2,4]triazine p38α mitogen-activated protein kinase inhibitors. J. Med. Chem. 2008, 51, 4–16.Google Scholar
Hunt, J. T.; Mitt, T.; Borzilleri, R.; Gullo-Brown, J.; Fargnoli, J.; Fink, B.; Han, W.-C.; Mortillo, S.; Vite, G.; Wautlet, B.; Wong, T.; Yu, C.; Zheng, Z.; Bhide, R.Discovery of the pyrrolo[2,1-f][1,2,4]triazine nucleus as a new kinase inhibitor template. J. Med. Chem. 2004, 47, 4054–4059.Google Scholar
Pargellis, C.; Tong, L.; Churchill, L.; Cirillo, P. F.; Gilmore, T.; Graham, A. G.; Grob, P. M.; Hickey, E. R.; Moss, N.; Pav, S.; Regan, J.Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat. Struct. Biol. 2002, 9, 268–272.Google Scholar
Wrobleski, S. T.; Lin, S.; Hynes, J.; Wu, H.; Pitt, S.; Shen, D. R.; Zhang, R.; Gillooly, K. M.; Shuster, D. J.; McIntyre, K. W.; Doweyko, A. M.; Kish, K. F.; Tredup, J. A.; Duke, G. J.; Sack, J. S.; McKinnon, M.; Dodd, J.; Barrish, J. C.; Schieven, G. L.; Lefterheris, K.Synthesis and SAR of new pyrrolo[2,1-f][1,2,4]triazines as potent p38α MAP kinase inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 2739–2744.Google Scholar
Das, J.; Moquin, R. V.; Pitt, S.; Zhang, R.; Shen, D. R.; McIntyre, K. W.; Gillooly, K. M.; Doweyko, A. M.; Sack, J. S.; Zhang, H.; Kiefer, S. E.; Kish, K. F.; McKinnon, M.; Barrish, J. C.; Dodd, J.; Schieven, G. L.; Lefterheris, K.Pyrazolo-pyrimidines: a novel heterocyclic scaffold for potent and selective p38α inhibitors. Bioorg. Med. Chem. Lett. 2008, 18, 2652–2657.Google Scholar
Hynes, J.; Wu, H.; Pitt, S.; Shen, D. R.; Zhang, R.; Schieven, G. L.; Gillooly, K. M.; Shuster, D. J.; Taylor, T. L.; Yang, X.; McIntyre, K. W.; McKinnon, M.; Zhang, H.; Marathe, P. H.; Doweyko, A. M.; Kish, K.; Kiefer, S. E.; Sack, J. S.; Newitt, J. A.; Barrish, J. C.; Dodd, J.; Leftheris, K.The discovery of (R)-2-(sec-butylamino)-N-(2-methyl-5-(methyl-carbamoyl)phenyl) thiazole-5-carboxamide (BMS-640994) – A potent and efficacious p38α MAP kinase inhibitor. Bioorg. Med. Chem. Lett. 2008, 18, 1762–1767.Google Scholar
Mavunkel, B. J.; Chakravarty, S.; Perumattam, J. J.; Luedtke, G. R.; Liang, X.; Lim, D.; Xu, Y.-J.; Laney, M.; Liu, D. Y.; Schreiner, G. F.; Lewicki, J. A.; Dugar, S.Indole-based heterocyclic inhibitors of p38α MAP kinase: designing a conformationally restricted analogue. Bioorg. Med. Chem. Lett. 2003, 13, 3087–3090.Google Scholar
Dhar, T. G. M.; Wrobleski, S. T.; Lin, S.; Furch, J. A.; Nirschl, D. S.; Fan, Y.; Todderud, G.; Pitt, S.; Doweyko, A. M.; Sack, J. S.; Mathur, A.; McKinnon, M.; Barrish, J. C.; Dodd, J. H.; Schieven, G. L.; Leftheris, K.Synthesis and SAR of p38α MAP kinase inhibitors based on heterobicyclic scaffolds. Bioorg. Med. Chem. Lett. 2007, 17, 5019–5024.Google Scholar
Boehm, J. C.; Smietana, J. M.; Sorenson, M. E.; Garigipati, R. S.; Gallagher, T. F.; Sheldrake, P. L.; Breadbeer, J.; Badger, A. M.; Laydon, J. T.; Lee, J. C.; Hillegass, L. M.; Griswold, D. E.; Breton, J. J.; Chabot-Fletcher, M. C.; Adams, J. L.1-Substituted 4-aryl-5-pyridinylimidazoles: a new class of cytokine suppressive drugs with low 5-lipoxygenase and cyclooxygenase inhibitory potency. J. Med. Chem. 1996, 39, 3929–3937.Google Scholar
Trejo, A.; Arzeno, H.; Browner, M.; Chanda, S.; Cheng, S.; Comer, D. D.; Dalrymple, S. A.; Dunten, P.; Lafargue, J.; Lovejoy, B.; Freire-Moar, J.; Lim, J.; McIntosh, J.; Miller, J.; Papp, E.; Reuter, D.; Roberts, R.; Sanpablo, F.; Saunders, J.; Song, K.; Villasenor, A.; Warren, S. D.; Welch, M.; Weller, P.; Whiteley, P. E.; Zeng, L.; Goldstein, D. M.Design and synthesis of 4-azaindoles as inhibitors of p38 MAP kinase. J. Med. Chem. 2003, 46, 4702–4713.Google Scholar
Dombroski, M. A.; Letavic, M. A.; McClure, K. F.; Barberia, J. T.; Carty, T. J.; Cortina, S. R.; Csiki, C.; Dipesa, A. J.; Elliott, N. C.; Gabel, C. A.; Jordan, C. K.; Labasi, J. M.; Martin, W. H.; Peese, K. M.; Stock, I. A.; Svensson, L.; Sweeney, F. J.; Yu, C. H.Benzimidazolone p38 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 919–923.Google Scholar
McClure, K. F.; Letavic, M. A.; Kalgutkar, A. S.; Gabel, C. A.; Audoly, L.; Barberia, J. T.; Braganza, J. F.; Carter, D.; Carty, T. J.; Cortina, S. R.; Dombroski, M. A.; Donahue, K. M.; Elliott, N. C.; Gibbons, C. P.; Jordan, C. K.; Kuperman, A. V.; Labasi, J. M.; LaLiberte, R. E.; McCoy, J. M.; Naiman, B. M.; Nelson, K. L.; Nguyen, H. T.; Peese, K. M.; Sweeney, F. J.; Taylor, T. J.; Trebino, C. E.; Abramov, Y. A.; Laird, E. R.; Volberg, W. A.; Zhou, J.; Bach, J.; Lombardo, F.Structure-activity relationships of triazolopyridine oxazole p38 inhibitors: identification of candidates for clinical development. Bioorg. Med. Chem. Lett. 2006, 16, 4339–4344.Google Scholar
Liu, C.; Lin, J.; Pitt, S.; Zhang, R. F.; Sack, J. S.; Kiefer, S. E.; Kish, K.; Doweyko, A. M.; Zhang, H.; Marathe, P. H.; Trzaskos, J.; McKinnon, M.; Dodd, J. H.; Barrish, J. C.; Schieven, G. L.; Leftheris, K.Benzothiazole based inhibitors of p38α MAP kinase. Bioorg. Med. Chem. Lett. 2008, 18, 1874–1879.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×