Skip to main content Accessibility help
×
Home
  • Print publication year: 2017
  • Online publication date: June 2017

22 - Anisotropic Properties of Black Phosphorus

from Part III
22.4
[1]Geim, A. and Novoselov, K. S. The rise of graphene. Nat. Mater., 6, 183–91, 2007.
[2]Geim, A. Graphene: status and prospects. Science, 324, 1530–4, 2009.
[3]Novoselov, K. S., Fal’ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. A roadmap for graphene. Nature, 490, 192200, 2012.
[4]Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S. V., and Firsov, A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197200, 2005.
[5]Zhang, Y., Tan, Y.-W., Stormer, H. L., and Kim, P. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature, 438, 201–4, 2005.
[6]Schwierz, F. Graphene transistors. Nat. Nanotechnol., 5, 487–96, 2010.
[7]Wu, Y., Lin, Y.-M., Bol, A. A., Jenkins, K. A., Xia, F., Farmer, D. B., Zhu, Y., and Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, 74–8, 2011.
[8]Li, X., Wang, X., Zhang, L., Lee, S., and Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229–32, 2008.
[9]Bai, J., Zhong, X., Jiang, S., Huang, Y., and Duan, X. Graphene nanomesh. Nat. Nanotechnol., 5, 190–4, 2010.
[10]Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., and Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 8, 1102–20, 2014.
[11]Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805, 2010.
[12]Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol., 6, 147–50, 2011.
[13]Liu, H., Si, M., Najmaei, S., Neal, A. T., Du, Y., Ajayan, P.M., Lou, J., and Ye, P. D. Statistically study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. Nano Lett., 13, 2640–6, 2013.
[14]Splendiani, A., Sun, L., Zhang, Y. B., Li, T. S., Kim, J., Chim, C. Y., Galli, G., and Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett., 10, 1271–5, 2010.
[15]Yoon, Y., Ganapathi, K., and Salahuddin, S. How good can monolayer MoS2 transistors be? Nano Lett., 11, 3768–73, 2011.
[16]Du, Y., Liu, H., Neal, A. T., Si, M., and Ye, P. D. Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett., 34, 1328–30, 2013.
[17]Du, Y., Yang, L., Zhang, J., Liu, H., Majumdar, K., Kirsch, P. D., and Ye, P. D. MoS2 field-effect transistors with graphene/metal heterocontacts. IEEE Electron Device Lett., 35, 599601, 2014.
[18]Du, Y., Yang, L., Liu, H., and Ye, P. D. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors. APL Materials, 2, 092510, 2014.
[19]Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., and Ye, P. D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8, 4033–41, 2014.
[20]Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., and Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol., 9, 372–7, 2014.
[21]Xia, F., Wang, H., and Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5, 4458, 2014.
[22]Gomez, A. et al. Isolation and characterization of few-layer BP. 2D Mat., 1, 025001, 2014.
[23]Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. C., and Özyilmaz, B. Electrical field effect in ultra-thin black phosphorus. Appl. Phys. Lett., 104, 103106, 2014.
[24]Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc., 36, 1344–63, 1914.
[25]Warschauer, D. Electrical and optical properties of crystalline BP. J. Appl. Phys., 34, 1853–60, 1963.
[26]Nishii, T., Maruyama, Y., Inabe, T., and Shirotani, I. Synthesis and characterization of BP intercalation compounds. Synth. Met., 18, 559–64, 1987.
[27]Narita, S. et al. Electrical and optical properties of BP single crystals. Physica, 117B–118B, 422–4, 1983.
[28]Baba, M., Nakamura, Y., Takeda, Y., Shibata, K., Morita, A., Koike, Y., and Fukase, T. Hall effect and two-dimensional electron gas in BP. J. Phys.: Condens. Matter, 4, 1535–44, 1992.
[29]Maruyama, Y., Suzuki, S., Kobayashi, K., and Tanuma, S. Synthesis and some properties of BP single crystals. Physica, 105B, 99102, 1981.
[30]Morita, A. Semiconducting BP. Appl. Phys. A: Mater. Sci. Process., 39, 227–42, 1986.
[31]Shirotani, I. Growth of large single crystals of BP at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst., 86, 203–11, 1982.
[32]Akahama, Y., Endo, S., and Narita, S. Electrical properties of single-crystal BP under pressure. Physica B + C, 139–140, 397400, 1986.
[33]Li, L., Ye, G., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X., and Zhang, Y. Quantum oscillation in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol., 10, 608–13, 2015.
[34]Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R. K., and Lau, C. N. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mat., 2, 011001, 2015.
[35]Chen, X., Wu, Y., Wu, Z., Xu, S., Wang, L., Han, Y., Ye, W., Han, T., He, Y., Cai, Y., and Wang, N. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6, 7315, 2015.
[36]Cao, Y. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett., 15, 4914–21, 2015.
[37]Doganov, R. A., O’Farrell, E. C. T., Koening, S. P., Yeo, Y., Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F., Watanabe, K., Taniguchi, T., Neto, A. H. C., and Özyilmaz, B. Transport properties of pristine few-layer black phosphorus by ver Waals passivation in an inert atmosphere. Nat. Commun., 6, 6647, 2014.
[38]Du, Y., Liu, H., Deng, Y., and Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano, 8, 10035–42, 2014.
[39]Deng, Y., Luo, Z., Conrad, N. J., Liu, H., Gong, Y., Najmaei, S., Ajayan, P. M., Lou, J., Xu, X., and Ye, P. D. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano, 8, 8292–9, 2014.
[40]Haratipour, N., Robbins, M. C., and Koester, S. J. Black phosphorus p-MOSFET with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electron Device Lett., 36, 411–13, 2015.
[41]Wang, H., Wang, X., Xia, F., Wang, L., Jiang, H., Xia, Q., Chin, M. L., Dubey, M., and Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett., 14, 6424–9, 2014.
[42]Das, S., Demarteau, M., and Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano, 8, 11730–8, 2014.
[43]Bridgman, P. W. Further note on black phosphorus. J. Am. Chem. Soc., 38, 609–12, 1914.
[44]Keyes, R. W. The electric properties of black phosphorus. Phys. Rev., 92, 580–4, 1953.
[45]Shirotani, I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst., 86, 203–11, 1982.
[46]Li, X., Deng, B., Wang, X., Chen, S., Vaisman, M., Karato, S.-I., Pan, G., Lee, M. L., Cha, J., Wang, H., and Xia, F. Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mat., 2, 031002, 2015.
[47]Krebs, H., Weitz, H., and Worms, K. H. Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors. Anorg. Allg. Chem., 280, 119–33, 1955.
[48]Brown, A. and Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Cryst., 19, 684–5, 1965.
[49]Maruyama, Y., Suzuki, S., Kobayashi, K., and Tanuma, S. Synthesis and some properties of black phosphorus single crystal. Physica B, 105, 99102, 1981.
[50]Maruyama, Y., Inabe, T., Nishii, T., He, L., Dann, A. J., Shirotani, I., Fahy, M. R., and Willis, M. R. Electrical conductivity of black phosphorus–silicon compound. Synthetic Met., 29, 213–18, 1989.
[51]Maruyama, Y., Inabe, T., He, L., and Oshima, K. Electrical conductivity of black phosphorous–germanium compound. Synthetic Met., 43, 4067–70, 1991.
[52]Lange, S., Schmidt, P., and Nilges, T. Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem., 46, 4028–35, 2007.
[53]Nilges, T., Kersting, M., and Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem., 181, 1707–11, 2008.
[54]Köpf, M., Eckstein, N., Pfister, D., Grotz, C., Krüger, I., Greiwe, M., Hansen, T., Kohlmann, H., and Nilges, T. Access and in situ growth of phosphorene-precursor black phosphorus. J. Crystal Growth, 405, 610, 2014.
[55]Yang, Z., Hao, J., Yuan, S., Lin, S., Yau, H. M., Dai, J., and Lau, S. P. Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater., 27, 3748–54, 2015.
[56]Qiu, G., Nian, Q., Deng, Y., Jin, S., Charnas, A. R., Cheng, G., Ye, P. D. Synthesis of black phosphorus films by ultra-fast laser exfoliation. In preparation.
[57]Liu, H., Du, Y., Deng, Y., and Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 44, 2732–43, 2015.
[58]Takao, Y., Asahina, H., and Morita, A. Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn, 50, 3362–9, 1981.
[59]Asahina, H., Shindo, K., and Morita, A. Electronic structure of black phosphorus in self-consistent pseudopotential approach. J. Phys. Soc. Jpn, 51, 1192–9, 1982.
[60]Goodman, N. B., Ley, L., and Bullett, D. W. Valence-band structures of phosphorus allotropes. Phys. Rev. B, 27, 7440–50, 1983.
[61]Rodin, A. S., Carbalho, A., and Neto, A. H. C. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112, 176801, 2014.
[62]Favron, A, Gaufres, E., Fossard, F., Levesque, P. L., Heureux, A. P., Tang, N. Y.-W., Loiseau, A., Leonelli, R., Francoeur, R. S., and Martel, R. arXiv:1408.0345, 2014.
[63]Wood, J. D., Wells, S. A., Jariwala, D., Chen, K. S., Cho, E., Sangwan, V. K., Liu, X., Lauhon, L. J., Marks, T. J., and Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett., 14, 6964–70, 2014.
[64]Molle, A., Grazianetti, C., Chiappe, D., Cinquanta, E., Cianci, E., Tallarida, G., and Fanciulli, M. Hindering the oxidation of silicene with non-reactive encapsulation. Adv. Funct. Mater., 23, 4340–4, 2013.
[65]Liu, H., Neal, A. T., Si, M., Du, Y., and Ye, P. D. The effect of dielectric capping on few-layer phosphorene transistors: Tuning the Schottky barrier heights. IEEE Electron Device Lett., 35, 795–7, 2014.
[66]Wang, H., Wang, X., Xia, F., Wang, L., Jiang, H., Xia, Q., Chin, M. L., Dubey, M., and Han, S. J. Black phosphorus radio-frequency transistors. Nano Lett., 14, 6424–9, 2014.
[67]Luo, X., Rahbarihagh, Y., Hwang, J. C. M., Liu, H., Du, Y., and Ye, P. D. Temporal and thermal stability of Al2O3-passivated phosphorene MOSFETs. IEEE Electron Device Lett., 35, 1314–16, 2014.
[68]Kim, J. S., Liu, Y., Zhu, W., Kim, S., Wu, D., Tao, L., Dodabalapur, A., Lai, K., and Akinwande, D. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep., 5, 8989–95, 2015.
[69]Li, L., Yang, F., Ye, G., Zhang, Z., Watanabe, K., Taniguchi, T., Wang, Y., Chen, X., and Zhang, Y. arXiv:1504.04731, 2015.
[70]Li, L., Ye, G., Tran, V., Fei, R., Chen, G., Wang, H., Wang, J., Watanabe, K., Taniguchi, T., Yang, L., Chen, X., and Zhang, Y. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol., 10, 608–13, 2015.
[71]Gillgren, N., Wickramaratne, D., Shi, Y., Espiritu, T., Yang, J., Hu, J., Wei, J., Liu, X., Mao, Z., Watanabe, K., Taniguchi, T., Bockrath, M., Barlas, Y., Lake, R. K., and Lau, C. N. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mat. 2 011001, 2015.
[72]Chen, X., Wu, Y., Wu, Z., Xu, S., Wang, L., Han, Y., Ye, W., Han, T., He, Y., Cai, Y., and Wang, N. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun., 6, 7315, 2015.
[73]Cao, Y., Mishchenko, A., Yu, G. L., Khestanova, E., Rooney, A. P., Prestat, E., Kretinin, A. V., Blake, P., Shalom, M. B., Woods, C., Chapman, J., Balakrishnan, G., Grigorieva, I. V., Novoselov, K. S., Piot, B. A., Potemski, M., Watanabe, K., Taniguchi, T., Haigh, S. J., Geim, A. K., and Gorbachev, R. V. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere, Nano Lett., 15, 4914–21, 2015.
[74]Schroder, D. K. Semiconductor Material and Device Characterization. Wiley Interscience, 1990.
[75]Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R., Lundstrom, M. S., Ye, P. D., and Xu, X. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6, 8572, 2015.
[76]Wu, J., Mao, N., Xie, L., Xu, H., and Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., 127, 2396–9, 2015.
[77]Feng, Y., Zhou, J., Du, Y., Miao, F., Duan, C. G., Wang, B., and Wan, X. Raman spectra of few-layer phosphorene studied from first-principles calculations. J. Phys.: Condens. Matter, 27, 185302, 2015.
[78]Wang, X., Jones, A. M., Seyler, K. L., Tran, V., Jia, Y., Zhao, H., Wang, H., Yang, L., Xu, X., and Xia, F. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 10, 517–21, 2015.
[79]Li, L., Kim, J., Jin, K., Ye, G., Qiu, D. Y., Jornada, F., Shi, Z., Chen, L., Zhang, Z., Yang, F., Watanabe, K., Taniguchi, T., Ren, W., Louie, S. G., Chen, X., Zhang, Y., and Wang, F. Direct observation of layer-dependent electronic structure in phosphorene. Nat. Nanotechnol., 12, 2125, 2017.
[80]Flores, E. et al. Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett., 106, 022102, 2015.
[81]Qin, G. et al. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys., 17, 4854–8, 2015.
[82]Jain, A. and McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep., 5, 8501, 2015.
[83]Ong, Z., Cai, Y., Zhang, G., and Zhang, Y. Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C, 118, 25272, 2014.
[84]Liu, T.-H. and Chang, C.-C. Anisotropic thermal transport in phosphorene: effects of crystal orientation. Nanoscale 7, 10648–54, 2015.
[85]Lee, S. et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun. 6, 8573, 2015.
[86]Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C., and Cahill, D.G. Anisotropic thermal conductivity of exfoliated black phosphorus. Adv. Mater., 27, 8017–22, 2015.
[87]Rodin, A. S., Carvalho, A., and Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112, 176801, 2014.
[88]Fei, R. and Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett., 14, 28842889, 2014.
[89]Peng, X., Wei, Q., and Copple, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B, 90, 085402, 2014.
[90]Caklr, D., Sahin, H., and Peeters, F. M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B, 90, 205421, 2014.
[91]Wei, Q. and Peng, X. Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett., 104, 251915, 2014.
[92]Kou, L., Ma, Y., Smith, S. C., and Chen, C. Anisotropic ripple deformation in phosphorene. The J. of Phys. Chem. Lett., 5, 1509–13, 2015.
[93]Jiang, J. and Park, H. Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun., 5, 4727, 2014.
[94]Fei, R. and Yang, L. Lattice vibration modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett., 105, 083120, 2014.
[95]Wang, Y., Cong, C., Fei, R., Yang, W., Chen, Y., Cao, B., Yang, L., and Yu, T. Remarkable anistropic phono response in uniaxially strained few-layer black phosphorus. Nano Research, 8, 3944–53, 2015.
[96]Du, Y., Maassen, J., Wu, W., Luo, Z., Xu, X., Ye, P.D., Auxetic black phosphorus: A 2D material with negative Poisson’s ratio. Nano Lett., 16, 6701–8, 2016.
[97]Conley, H. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 13, 3626–30, 2013.
[98]Ni, Z. et al. Uniaxial strain on graphene: Raman spectroscopy study and band gap opening. ACS Nano, 2, 2301–5, 2008.