Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T14:05:28.361Z Has data issue: false hasContentIssue false

23 - Optical Properties and Optoelectronic Applications of Black Phosphorus

from Part III

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 435 - 457
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

23.5 References

Koenig, S P, Doganov, R A, Schmidt, H, Castro Neto, A H, and Özyilmaz, B 2014 Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104 103106.CrossRefGoogle Scholar
Liu, H, Neal, A T, Zhu, Z, Luo, Z, Xu, X, Tománek, D, and Ye, P D 2014 Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8 4033–41.Google Scholar
Castellanos-Gomez, A, Vicarelli, L, Prada, E, Island, J O, Narasimha-Acharya, K L, Blanter, S I, Groenendijk, D J, Buscema, M, Steele, G A, Alvarez, J V, Zandbergen, H W, Palacios, J J, and van der Zant, H S J 2014 Isolation and characterization of few-layer black phosphorus. 2D Mater. 1 025001.CrossRefGoogle Scholar
Buscema, M, Groenendijk, D J, Blanter, S I, Steele, G A, van der Zant, H S J, and Castellanos-Gomez, A 2014 Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14 3347–52.CrossRefGoogle ScholarPubMed
Gillgren, N, Wickramaratne, D, Shi, Y, Espiritu, T, Yang, J, Hu, J, Wei, J, Liu, X, Mao, Z, Watanabe, K, Taniguchi, T, Bockrath, M, Barlas, Y, Lake, R K, and Ning Lau, C 2014 Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2 011001.CrossRefGoogle Scholar
Liu, H, Du, Y, Deng, Y, and Ye, P D 2015 Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44 2732–43.CrossRefGoogle ScholarPubMed
Ling, X, Wang, H, Huang, S, Xia, F, and Dresselhaus, M S 2015 The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112 201416581.CrossRefGoogle ScholarPubMed
Kim, J, Baik, S S, Ryu, S H, Sohn, Y, Park, S, Park, B-G, Denlinger, J, Yi, Y, Choi, H J, and Kim, K S 2015 Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349 723–6.CrossRefGoogle Scholar
Li, L, Ye, G J, Tran, V, Fei, R, Chen, G, Wang, H, Wang, J, Watanabe, K, Taniguchi, T, Yang, L, Chen, X H, and Zhang, Y 2015 Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotechnol. 10 608–13.CrossRefGoogle Scholar
Chen, X, Wu, Y, Wu, Z, Han, Y, Xu, S, Wang, L, Ye, W, Han, T, He, Y, Cai, Y, and Wang, N 2015 High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6 7315.Google Scholar
Li, L, Yang, F, Ye, G J, Zhang, Z, Zhu, Z, Lou, W-K, Li, L, Watanabe, K, Taniguchi, T, Chang, K, Wang, Y, Chen, X H, and Zhang, Y 2015 Quantum Hall effect in black phosphorus two-dimensional electron gas. arXiv 1504.07155.Google Scholar
Yang, Z, Hao, J, Yuan, S, Lin, S, Yau, H M, Dai, J, and Lau, S P 2015 Field-effect transistors based on amorphous black phosphorus ultrathin films by pulsed laser deposition. Adv. Mater. 27 3748–54.Google Scholar
Du, Y, Liu, H, Deng, Y, and Ye, P D 2014 Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8 10035–42.Google Scholar
Wang, H, Wang, X, Xia, F, Wang, L, Jiang, H, Xia, Q, Chin, M L, Dubey, M, and Han, S 2014 Black phosphorus radio-frequency transistors. Nano Lett. 14 6424–9.CrossRefGoogle ScholarPubMed
Na, J, Lee, Y T, Lim, J A, Hwang, D K, Kim, G-T, Choi, W K, and Song, Y-W 2014 Few-layer black phosphorus field-effect transistors with reduced current fluctuation. ACS Nano 8 11753–62.CrossRefGoogle ScholarPubMed
Kamalakar, M V, Madhushankar, B N, Dankert, A, and Dash, S P 2014 Engineering Schottky barrier in black phosphorus field-effect devices for spintronic applications.CrossRefGoogle Scholar
Island, J O, Steele, G A, Zant, H S J van der, and Castellanos-Gomez, A 2015 Environmental instability of few-layer black phosphorus. 2D Mater. 2 011002.Google Scholar
Avsar, A, Vera-Marun, I J, Tan, J Y, Watanabe, K, Taniguchi, T, Castro Neto, A H, and Özyilmaz, B 2015 Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 9 4138–45.CrossRefGoogle ScholarPubMed
Li, L, Yu, Y, Ye, G J, Ge, Q, Ou, X, Wu, H, Feng, D, Chen, X H, and Zhang, Y 2014 Black phosphorus field-effect transistors. Nat. Nanotechnol. 9 372–7.CrossRefGoogle ScholarPubMed
Kamalakar, M V, Madhushankar, B N, Dankert, A, and Dash, S P 2015 Low schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Small 11 2209–16.Google Scholar
Xia, F, Wang, H, and Jia, Y 2014 Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5 4458.CrossRefGoogle ScholarPubMed
Zhu, W, Yogeesh, M N, Yang, S, Aldave, S H, Kim, J, Sonde, S S, Tao, L, Lu, N, and Akinwande, D 2015 Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 15 1883–90.Google Scholar
Chaves, A, Low, T, Avouris, P, Çakır, D, and Peeters, F M 2015 Anisotropic exciton Stark shift in black phosphorus. Phys. Rev. B 91 155311.Google Scholar
Wang, X, Jones, A M, Seyler, K L, Tran, V, Jia, Y, Zhao, H, Wang, H, Yang, L, Xu, X, and Xia, F 2015 Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10 517–21.Google Scholar
Schuster, R, Trinckauf, J, Knupfer, M, and Büchner, B 2015 Anisotropic particle–hole excitations in black phosphorus. Phys. Rev. Lett. 115 026404.CrossRefGoogle ScholarPubMed
Tran, V, Soklaski, R, Liang, Y, and Yang, L 2014 Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89 235319.Google Scholar
Cakir, D, Sevik, C, and Peeters, F M 2015 Remarkable effect of stacking on the electronic and optical properties of few layer black phosphorus. arXiv 1506.04707Google Scholar
Keyes, R W 1953 The electrical properties of black phosphorus. Phys. Rev. 92 580–4.CrossRefGoogle Scholar
Asahina, H and Morita, A 1984 Band structure and optical properties of black phosphorus. J. Phys. C Solid State Phys. 17 1839–52.Google Scholar
Morita, A 1986 Semiconducting black phosphorus. Appl. Phys. A Solids Surfaces 39 227–42.Google Scholar
Mak, K F, Lee, C, Hone, J, Shan, J, and Heinz, T F 2010 Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105 136805.Google Scholar
Splendiani, A, Sun, L, Zhang, Y, Li, T, Kim, J, Chim, C-Y, Galli, G, and Wang, F 2010 Emerging photoluminescence in monolayer MoS2. Nano Lett. 10 1271–5.Google Scholar
Kuc, A, Zibouche, N, and Heine, T 2011 Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83 14.Google Scholar
Rudenko, A N, and Katsnelson, M I 2014 Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 89 201408.Google Scholar
Qiao, J, Kong, X, Hu, Z-X, Yang, F, and Ji, W 2014 High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5 4475.Google Scholar
Yang, J, Xu, R, Pei, J, Myint, Y W, Wang, F, Wang, Z, Zhang, S, Yu, Z, and Lu, Y 2015 Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4 e312.Google Scholar
Zhang, C D, Lian, J C, Yi, W, Jiang, Y H, Liu, L W, Hu, H, Xiao, W D, Du, S X, Sun, L L, and Gao, H J 2009 Surface structures of black phosphorus investigated with scanning tunneling microscopy. J. Phys. Chem. C 113 18823–6.CrossRefGoogle Scholar
Liang, L, Wang, J, Lin, W, Sumpter, B G, Meunier, V, and Pan, M 2014 Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14 6400–6.Google Scholar
Castellanos-Gomez, A 2015 Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett. 6 4280–91Google Scholar
Liu, B, Köpf, M, Abbas, A N, Wang, X, Guo, Q, Jia, Y, Xia, F, Weihrich, R, Bachhuber, F, Pielnhofer, F, Wang, H, Dhall, R, Cronin, S B, Ge, M, Fang, X, Nilges, T and Zhou, C 2015 Black arsenic-phosphorus: layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 27 4423–9.Google ScholarPubMed
Chen, Z, Lin, Y-M, Rooks, M J, and Avouris, P 2007 Graphene nano-ribbon electronics. Phys. E Low-Dimensional Syst. Nanostructures 40 228–32.Google Scholar
Castro, E, Novoselov, K, Morozov, S, Peres, N, dos Santos, J, Nilsson, J, Guinea, F, Geim, A, and Neto, A 2007 Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99 216802.CrossRefGoogle ScholarPubMed
Oostinga, J B, Heersche, H B, Liu, X, Morpurgo, A F, and Vandersypen, L M K 2008 Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7 151–7.Google Scholar
Wang, Q H, Kalantar-Zadeh, K, Kis, A, Coleman, J N, and Strano, M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7 699712Google Scholar
Lv, R, Robinson, J A, Schaak, R E, Sun, D, Sun, Y, Mallouk, T E, and Terrones, M 2015 Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48 5664.Google Scholar
Shockley, W and Queisser, H J 1961 Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32 510.CrossRefGoogle Scholar
Soole, J B D and Schumacher, H 1991 InGaAs metal–semiconductor–metal photodetectors for long wavelength optical communications. IEEE J. Quantum Electron. 27 737–52.CrossRefGoogle Scholar
Warschauer, D 1963 Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34 1853.Google Scholar
Sugai, S and Shirotani, I 1985 Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53 753–5.CrossRefGoogle Scholar
Zhang, S, Yang, J, Xu, R, Wang, F, Li, W, Ghufran, M, Zhang, Y-W, Yu, Z, Zhang, G, Qin, Q and Lu, Y 2014 Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8 9590–6.Google Scholar
Low, T, Rodin, a S, Carvalho, A, Jiang, Y, Wang, H, Xia, F, and Neto, a H C 2014 Tunable optical properties of multilayers black phosphorus. Phys. Rev. B 075434 15.Google Scholar
Yuan, H, Liu, X, Afshinmanesh, F, Li, W, Xu, G, Sun, J, Lian, B, Curto, A G, Ye, G, Hikita, Y, Shen, Z, Zhang, S-C, Chen, X, Brongersma, M, Hwang, H Y, and Cui, Y 2015 Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 10 707–13.CrossRefGoogle Scholar
Tran, V and Yang, L 2014 Scaling laws for the band gap and optical response of phosphorene nanoribbons Phys. Rev. B 89 245407.Google Scholar
Bao, Q L, Zhang, H, Wang, B, Ni, Z H, Lim, C H Y X, Wang, Y, Tang, D Y, and Loh, K P 2011 Broadband graphene polarizer Nat. Photonics 5 411.Google Scholar
Ross, J S, Wu, S, Yu, H, Ghimire, N J, Jones, A M, Aivazian, G, Yan, J, Mandrus, D G, Xiao, D, Yao, W, and Xu, X 2013 Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4 1474.Google Scholar
Ross, J S, Klement, P, Jones, A M, Ghimire, N J, Yan, J, Mandrus, D G, Taniguchi, T, Watanabe, K, Kitamura, K, Yao, W, Cobden, D H, and Xu, X 2014 Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 9 268–72.CrossRefGoogle ScholarPubMed
Vogt, P, De Padova, P, Quaresima, C, Avila, J, Frantzeskakis, E, Asensio, M C, Resta, A, Ealet, B, and Le Lay, G 2012 Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 108 155501.Google Scholar
Lopez-Sanchez, O, Lembke, D, Kayci, M, Radenovic, A, and Kis, A 2013 Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8 497501.Google Scholar
Koppens, F H L, Mueller, T, Avouris, P, Ferrari, A C, Vitiello, M S, and Polini, M 2014 Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9 780–93.Google Scholar
Tsai, D-S, Liu, K-K, Lien, D-H, Tsai, M-L, Kang, C-F, Lin, C-A, Li, L-J, and He, J-H 2013 Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7 3905–11.Google Scholar
Huo, N, Yang, S, Wei, Z, Li, S-S, Xia, J-B, and Li, J 2014 Photoresponsive and gas sensing field-effect transistors based on multilayer WS₂ nanoflakes. Sci. Rep. 4 5209.CrossRefGoogle ScholarPubMed
Furchi, M M, Polyushkin, D K, Pospischil, A, and Mueller, T 2014 Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett. 14 6165–70.Google Scholar
Buscema, M, Island, J O, Groenendijk, D J, Blanter, S I, Steele, G A, van der Zant, H S J, and Castellanos-Gomez, A 2015 Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44 3691–718.Google Scholar
Buscema, M, Groenendijk, D J, Steele, G A, van der Zant, H S J, and Castellanos-Gomez, A 2014 Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5 4651.Google Scholar
Low, T, Engel, M, Steiner, M, and Avouris, P 2014 Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90 081408.Google Scholar
Engel, M, Steiner, M, and Avouris, P 2014 Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett. 14 6414–7.Google Scholar
Hong, T, Chamlagain, B, Lin, W, Chuang, H-J, Pan, M, Zhou, Z, and Xu, Y-Q 2014 Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6 8978–83.Google Scholar
Xia, F, Mueller, T, Lin, Y-M, Valdes-Garcia, A, and Avouris, P 2009 Ultrafast graphene photodetector. Nat. Nanotechnol. 4 839–43.Google Scholar
Mueller, T, Xia, F, and Avouris, P 2010 Graphene photodetectors for high-speed optical communications. Nat. Photonics 4 297301.Google Scholar
Gan, X, Shiue, R-J, Gao, Y, Meric, I, Heinz, T F, Shepard, K, Hone, J, Assefa, S, and Englund, D 2013 Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 7 883–7.Google Scholar
Pospischil, A, Humer, M, Furchi, M M, Bachmann, D, Guider, R, Fromherz, T, and Mueller, T 2013 CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photonics 7 892–6.CrossRefGoogle Scholar
Wang, X, Cheng, Z, Xu, K, Tsang, H K, and Xu, J-B 2013 High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 7 888–91.Google Scholar
Groenendijk, D J, Buscema, M, Steele, G A, Michaelis de Vasconcellos, S, Bratschitsch, R, van der Zant, H S J, and Castellanos-Gomez, A 2014 Photovoltaic and photothermoelectric effect in a double-gated WSe2 device. Nano Lett. 14 5846–52.Google Scholar
Choi, W, Cho, M Y, Konar, A, Lee, J H, Cha, G-B, Hong, S C, Kim, S, Kim, J, Jena, D, Joo, J, and Kim, S 2012 High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24 5832–6.Google Scholar
Zhang, W, Huang, J-K, Chen, C-H, Chang, Y-H, Cheng, Y-J, and Li, L-J 2013 High-gain phototransistors based on a CVD MoS₂ monolayer. Adv. Mater. 25 3456–61.Google Scholar
Perea-López, N, Lin, Z, Pradhan, N R, Iñiguez-Rábago, A, Laura Elías, A, McCreary, A, Lou, J, Ajayan, P M, Terrones, H, Balicas, L, and Terrones, M 2014 CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1 011004.Google Scholar
Chang, Y-H, Zhang, W, Zhu, Y, Han, Y, Pu, J, Chang, J-K, Hsu, W-T, Huang, J-K, Hsu, C-L, Chiu, M-H, Takenobu, T, Li, H, Wu, C-I, Chang, W-H, Wee, A T S, and Li, L-J 2014 Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8 8582–90.Google Scholar
Xia, J, Huang, X, Liu, L-Z, Wang, M, Wang, L, Huang, B, Zhu, D-D, Li, J-J, Gu, C-Z, and Meng, X-M 2014 CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 6 8949–55.Google Scholar
Abderrahmane, A, Ko, P J, Thu, T V, Ishizawa, S, Takamura, T, and Sandhu, A 2014 High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology 25 365202.Google Scholar
Perea-López, N, Elías, A L, Berkdemir, A, Castro-Beltran, A, Gutiérrez, H R, Feng, S, Lv, R, Hayashi, T, López-Urías, F, Ghosh, S, Muchharla, B, Talapatra, S, Terrones, H, and Terrones, M 2013 Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23 5511–17.Google Scholar
Zhang, W, Chiu, M-H, Chen, C-H, Chen, W, Li, L-J, and Wee, A T S 2014 Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8 8653–61Google Scholar
Lee, H S, Min, S-W, Chang, Y-G, Park, M K, Nam, T, Kim, H, Kim, J H, Ryu, S, and Im, S 2012 MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12 3695–700.Google Scholar
Yin, Z, Li, H, Li, H, Jiang, L, Shi, Y, Sun, Y, Lu, G, Zhang, Q, Chen, X, and Zhang, H 2012 Single-layer MoS2 phototransistors. ACS Nano 6 7480.Google Scholar
Youngblood, N, Chen, C, Koester, S J, and Li, M 2015 Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photonics 9 247–52.Google Scholar
Vivien, L, Polzer, A, Marris-Morini, D, Osmond, J, Hartmann, J M, Crozat, P, Cassan, E, Kopp, C, Zimmermann, H, and Fédéli, J M 2012 Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20 1096.Google Scholar
Assefa, S, Xia, F, and Vlasov, Y A 2010 Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464 80–4.CrossRefGoogle ScholarPubMed
Rathi, S, Lee, I, Lim, D, Wang, J, Ochiai, Y, Aoki, N, Watanabe, K, Taniguchi, T, Lee, G-H, Yu, Y-J, Kim, P, and Kim, G-H 2015 Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices. Nano Lett. 15 5017–24.Google Scholar
Yu, W J, Liu, Y, Zhou, H, Yin, A, Li, Z, Huang, Y, and Duan, X 2013 Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol 8 952–8.Google Scholar
Britnell, L, Ribeiro, R M, Eckmann, A, Jalil, R, Belle, B D, Mishchenko, A, Kim, Y-J, Gorbachev, R V, Georgiou, T, Morozov, S V, Grigorenko, A N, Geim, A K, Casiraghi, C, Neto, A H C, and Novoselov, K S 2013 Strong light–matter interactions in heterostructures of atomically thin films. Science 340 1311–14.Google Scholar
Massicotte, M, Schmidt, P, Vialla, F, Schädler, K G, Reserbat-Plantey, A, Watanabe, K, Taniguchi, T, Tielrooij, K J, and Koppens, F H L 2015 Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 16.Google Scholar
Baugher, B W H, Churchill, H O H, Yang, Y, and Jarillo-Herrero, P 2014 Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9 262–7.Google Scholar
Pospischil, A, Furchi, M M, and Mueller, T 2014 Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9 257–61.Google Scholar
Deng, Y, Luo, Z, Conrad, N J, Liu, H, Gong, Y, Najmaei, S, Ajayan, P M, Lou, J, Xu, X, and Ye, P D 2014 Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8 8292–9.Google Scholar
Gehring, P, Urcuyo, R, Duong, D L, Burghard, M, and Kern, K 2015 Thin-layer black phosphorous/GaAs heterojunction p–n diodes. Appl. Phys. Lett. 106 233110.Google Scholar
Yao, Y, Hoffman, A J, and Gmachl, C F 2012 Mid-infrared quantum cascade lasers. Nat. Photonics 6 432–9.Google Scholar
Soref, R 2010 Mid-infrared photonics in silicon and germanium. Nat. Photonics 4 495–7.Google Scholar
Padilha, J E, Fazzio, A, and da Silva, A J R 2015 van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 114 066803.Google Scholar
Chen, P, Xiang, J, Yu, H, zhang, J, Xie, G, Wu, S, Lu, X, Wang, G, Zhao, J, Wen, F, Liu, Z, Yang, R, Shi, D, and Zhang, G 2015 Gate tunable MoS2–black phosphorus heterojunction devices. 2D Mater. 2 034009.Google Scholar
Yan, R, Fathipour, S, Han, Y, Song, B, Xiao, S, Li, M, Ma, N, Protasenko, V, Muller, D A, Jena, D, and Xing, H G 2015 Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15 5791–8.Google Scholar
Konstantatos, G, Badioli, M, Gaudreau, L, Osmond, J, Bernechea, M, Garcia de Arquer, F P, Gatti, F, and Koppens, F H L 2012 Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7 363–8.Google Scholar
Sundaram, R S, Engel, M, Lombardo, A, Krupke, R, Ferrari, A C, Avouris, P, and Steiner, M 2013 Electroluminescence in single layer MoS2. Nano Lett. 13 1416–21.Google Scholar
Jo, S, Ubrig, N, Berger, H, Kuzmenko, A B, and Morpurgo, A F 2014 Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14 2019–25.Google Scholar
Cheng, R, Li, D, Zhou, H, Wang, C, Yin, A, Jiang, S, Liu, Y, Chen, Y, Huang, Y, and Duan, X 2014 Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14 5590–7.Google Scholar
Köpf, M, Eckstein, N, Pfister, D, Grotz, C, Krüger, I, Greiwe, M, Hansen, T, Kohlmann, H, and Nilges, T 2014 Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 405 610.Google Scholar
Li, X, Deng, B, Wang, X, Chen, S, Vaisman, M, Karato, S, Pan, G, Larry Lee, M, Cha, J, Wang, H, and Xia, F 2015 Synthesis of thin-film black phosphorus on a flexible substrate. 2D Mater. 2 031002.Google Scholar
Favron, A, Gaufrès, E, Fossard, F, Lévesque, P L, Phaneuf-L’Heureux, A-L, Tang, N Y-W, Loiseau, A, Leonelli, R, Francoeur, S, and Martel, R 2014 Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects. arXiv:1408.0345v2 [cond-mat.mes-hall].Google Scholar
Wood, J D, Wells, S A, Jariwala, D, Chen, K-S, Cho, E, Sangwan, V K, Liu, X, Lauhon, L J, Marks, T J, and Hersam, M C 2014 Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14 6964–70.Google Scholar
Doganov, R A, O’Farrell, E C T, Koenig, S P, Yeo, Y, Ziletti, A, Carvalho, A, Campbell, D K, Coker, D F, Watanabe, K, Taniguchi, T, Castro Neto, A H, and Özyilmaz, B 2015 Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nat. Commun. 6 6647.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×