Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T16:01:27.069Z Has data issue: false hasContentIssue false

Quantity and variety of fruit and vegetable intake in midlife and cognitive impairment in late life: a prospective cohort study

Published online by Cambridge University Press:  14 March 2022

Li-Ting Sheng
Affiliation:
Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, People’s Republic of China The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, People’s Republic of China
Yi-Wen Jiang
Affiliation:
Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, People’s Republic of China
Derrick Johnston Alperet
Affiliation:
A*STAR Graduate Academy, Agency for Science, Technology and Research (A*STAR), Singapore Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
Lei Feng
Affiliation:
Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
An Pan*
Affiliation:
Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, People’s Republic of China Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, Zhejiang, People’s Republic of China
Woon-Puay Koh*
Affiliation:
Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
*
*Corresponding authors: A. Pan, email panan@hust.edu.cn; W-P. Koh, email kohwp@nus.edu.sg
*Corresponding authors: A. Pan, email panan@hust.edu.cn; W-P. Koh, email kohwp@nus.edu.sg

Abstract

There is limited evidence on fruit and vegetable intake in relation to cognitive function. This study aimed to evaluate the associations of quantity and variety in fruit and vegetable intake in midlife with cognitive impairment in late life. We used data from 16 737 participants of the Singapore Chinese Health Study, a population-based cohort study. The participants provided dietary data at recruitment at median age of 52·5 (range: 45–74) years and also participated in the third follow-up interview 20 years later at median age of 72·2 (range: 61–96) years. Quantity and variety of fruits and vegetables consumed at baseline were measured using a validated FFQ. Cognitive impairment at the third follow-up was defined using a Singapore-modified version of Mini-Mental State Examination. About 14·3 % participants had cognitive impairment. In multivariable logistic regression models, comparing extreme quartiles for intake of fruits and vegetables combined, the OR (95 % CI) associated with cognitive impairment was 0·83 (95 % CI: 0·73, 0·95; P-trend = 0·006) for quantity and 0·76 (95 % CI: 0·67, 0·87; P-trend< 0·001) for variety scores. Independently, those with increased variety of fruit intake or higher quantity of vegetable intake also had significantly 22 % and 15 % reduced odds of cognitive impairment, respectively. Finally, compared with those with low intake for both quantity and variety, those with both high quantity and variety for fruits and vegetables had 23 % reduction in odds of cognitive impairment. In conclusion, increase in quantity and variety of fruits and vegetables in midlife may reduce the risk of cognitive impairment in late life.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Prince, M, Wimo, A, Guerchet, M, et al. (2015) The World Alzheimer Report 2015, The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends. London: Alzheimer’s Disease International.Google Scholar
van de Rest, O, Berendsen, AA, Haveman-Nies, A, et al. (2015) Dietary patterns, cognitive decline, and dementia: a systematic review. Adv Nutr 6, 154168.CrossRefGoogle ScholarPubMed
Joint WHO/FAO Expert Consultation on Diet NatPoCD (2002) Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation, WHO Technical Report Series no. 916. Geneva: World Health Organization.Google Scholar
U.S. Department of Agriculture & U.S. Department of Health and Human Services (2020) Dietary Guidelines for Americans, 2020–2025. —https://www.dietaryguidelines.gov/sites/default/files/2021–03/Dietary_Guidelines_for_Americans-2020–2025.pdf (accessed April 2021).Google Scholar
National Health Service (2019) The Eatwell Guide. https://www.nhs.uk/live-well/eat-well/the-eatwell-guide/ (accessed September 2021).Google Scholar
Ritchie, K, Carriere, I, Ritchie, CW, et al. (2010) Designing prevention programmes to reduce incidence of dementia: prospective cohort study of modifiable risk factors. BMJ 341, c3885.CrossRefGoogle ScholarPubMed
Jiang, X, Huang, J, Song, D, et al. (2017) Increased consumption of fruit and vegetables is related to a reduced risk of cognitive impairment and dementia: meta-analysis. Front Aging Neurosci 9, 18.CrossRefGoogle Scholar
Loef, M & Walach, H (2012) Fruit, vegetables and prevention of cognitive decline or dementia: a systematic review of cohort studies. J Nutr Health Aging 16, 626630.CrossRefGoogle ScholarPubMed
Kang, JH, Ascherio, A & Grodstein, F (2005) Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol 57, 713720.CrossRefGoogle ScholarPubMed
Yuan, C, Fondell, E, Bhushan, A, et al. (2019) Long-term intake of vegetables and fruits and subjective cognitive function in US men. Neurology 92, e63e75.CrossRefGoogle ScholarPubMed
Devore, EE, Kang, JH, Breteler, MM, et al. (2012) Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann Neurol 72, 135143.CrossRefGoogle ScholarPubMed
Peneau, S, Galan, P, Jeandel, C, et al. (2011) Fruit and vegetable intake and cognitive function in the SU.VI.MAX 2 prospective study. Am J Clin Nutr 94, 12951303.CrossRefGoogle ScholarPubMed
Cheung, JTH, Lok, J, Gietel-Basten, S, et al. (2021) The food environments of fruit and vegetable consumption in east and southeast Asia: a systematic review. Nutrients 13, 148.CrossRefGoogle Scholar
Hankin, JH, Stram, DO, Arakawa, K, et al. (2001) Singapore Chinese health study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutr Cancer 39, 187195.CrossRefGoogle ScholarPubMed
Wu, J, Song, X, Chen, GC, et al. (2019) Dietary pattern in midlife and cognitive impairment in late life: a prospective study in Chinese adults. Am J Clin Nutr 110, 912920.CrossRefGoogle ScholarPubMed
Alperet, DJ, Butler, LM, Koh, WP, et al. (2017) Influence of temperate, subtropical, and tropical fruit consumption on risk of type 2 diabetes in an Asian population. Am J Clin Nutr 105, 736745.CrossRefGoogle Scholar
Chen, GC, Koh, WP, Yuan, JM, et al. (2018) Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: results from the Singapore Chinese health study and meta-analysis. Br J Nutr 119, 10571067.CrossRefGoogle ScholarPubMed
Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 12201228.CrossRefGoogle ScholarPubMed
Bhupathiraju, SN, Wedick, NM, Pan, A, et al. (2013) Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr 98, 15141523.CrossRefGoogle ScholarPubMed
Ye, X, Bhupathiraju, SN & Tucker, KL (2013) Variety in fruit and vegetable intake and cognitive function in middle-aged and older Puerto Rican adults. Br J Nutr 109, 503510.CrossRefGoogle ScholarPubMed
Feng, L, Chong, MS, Lim, WS, et al. (2012) The modified mini-mental state examination test: normative data for Singapore Chinese older adults and its performance in detecting early cognitive impairment. Singapore Med J 53, 458462.Google ScholarPubMed
Katzman, R, Zhang, MY, Ouang Ya, Q, et al. (1988) A Chinese version of the mini-mental state examination: impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol 41, 971978.CrossRefGoogle Scholar
Willett, W (2012) Nutritional Epidemiology, 3rd ed. New York: Oxford University Press.CrossRefGoogle Scholar
Jiang, YW, Sheng, LT, Pan, XF, et al. (2020) Meat consumption in midlife and risk of cognitive impairment in old age: the Singapore Chinese health study. Eur J Nutr 59, 17291738.CrossRefGoogle ScholarPubMed
Talaei, M, Feng, L, Yuan, JM, et al. (2020) Dairy, soy, and calcium consumption and risk of cognitive impairment: the Singapore Chinese health study. Eur J Nutr 59, 15411552.CrossRefGoogle ScholarPubMed
Jiang, YW, Sheng, LT, Feng, L, et al. (2021) Consumption of dietary nuts in midlife and risk of cognitive impairment in late-life: the Singapore Chinese health study. Age Ageing 50, 1215–1221.CrossRefGoogle ScholarPubMed
Patnode, CD, Perdue, LA, Rossom, RC, et al. (2020) Screening for cognitive impairment in older adults: updated evidence report and systematic review for the US preventive services task force. JAMA 323, 764785.CrossRefGoogle ScholarPubMed
Rodriguez-Casado, A (2016) The health potential of fruits and vegetables phytochemicals: notable examples. Crit Rev Food Sci Nutr 56, 10971107.CrossRefGoogle ScholarPubMed
Wu, L, Sun, D & Tan, Y (2017) Intake of fruit and vegetables and the incident risk of cognitive disorders: a systematic review and meta-analysis of cohort studies. J Nutr Health Aging 21, 12841290.CrossRefGoogle ScholarPubMed
Morris, MC, Evans, DA, Tangney, CC, et al. (2006) Associations of vegetable and fruit consumption with age-related cognitive change. Neurology 67, 13701376.CrossRefGoogle ScholarPubMed
Nooyens, AC, Bueno-de-Mesquita, HB, van Boxtel, MP, et al. (2011) Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem cohort study. Br J Nutr 106, 752761.CrossRefGoogle ScholarPubMed
Lindeman, RD, Romero, LJ, Koehler, KM, et al. (2000) Serum vitamin B12, C and folate concentrations in the New Mexico elder health survey: correlations with cognitive and affective functions. J Am Coll Nutr 19, 6876.CrossRefGoogle Scholar
Morris, MC, Evans, DA, Bienias, JL, et al. (2002) Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease on a biracial community study. JAMA 287, 32303237.CrossRefGoogle ScholarPubMed
Zhang, S, Tomata, Y, Sugiyama, K, et al. (2017) Mushroom consumption and incident dementia in elderly Japanese: the Ohsaki cohort 2006 study. J Am Geriatr Soc 65, 14621469.CrossRefGoogle ScholarPubMed
Lee, ATC, Richards, M, Chan, WC, et al. (2017) Lower risk of incident dementia among Chinese older adults having three servings of vegetables and two servings of fruits a day. Age Ageing 46, 773779.CrossRefGoogle ScholarPubMed
An, R, Liu, G, Khan, N, et al. (2019) Dietary habits and cognitive impairment risk among oldest-old Chinese. J Gerontol B Psychol Sci Soc Sci 74, 474483.CrossRefGoogle ScholarPubMed
Williamson, R, McNeilly, A & Sutherland, C (2012) Insulin resistance in the brain: an old-age or new-age problem? Biochem Pharmacol 84, 737745.CrossRefGoogle ScholarPubMed
Liu, RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134, 3479S3485S.CrossRefGoogle ScholarPubMed
Chou, YC, Lee, MS, Chiou, JM, et al. (2019) Association of diet quality and vegetable variety with the risk of cognitive decline in Chinese older adults. Nutrients 11, 1666.CrossRefGoogle ScholarPubMed
Sathish, T, Dunleavy, G, Soljak, M, et al. (2019) Risk factors for non-communicable diseases at baseline and their short-term changes in a workplace cohort in Singapore. Int J Environ Res Public Health 16, 4551.CrossRefGoogle Scholar
Oude Griep, LM, Stamler, J, Chan, Q, et al. (2013) Association of raw fruit and fruit juice consumption with blood pressure: the INTERMAP study. Am J Clin Nutr 97, 10831091.CrossRefGoogle ScholarPubMed
Chan, Q, Stamler, J, Brown, IJ, et al. (2014) Relation of raw and cooked vegetable consumption to blood pressure: the INTERMAP study. J Hum Hypertens 28, 353359.CrossRefGoogle ScholarPubMed
Gu, Y, He, Y, Ali, SH, et al. (2021) Fruit and vegetable intake and all-cause mortality in a Chinese population: the China health and nutrition survey. Int J Environ Res Public Health 18, 342.CrossRefGoogle Scholar
Launer, LJ (2005) The epidemiologic study of dementia: a life-long quest? Neurobiol Aging 26, 335340.CrossRefGoogle ScholarPubMed
Newby, PK, Weismayer, C, Akesson, A, et al. (2006) Long-term stability of food patterns identified by use of factor analysis among Swedish women. J Nutr 136, 626633.CrossRefGoogle ScholarPubMed
Zhang, X & Bi, X (2020) Post-stroke cognitive impairment: a review focusing on molecular biomarkers. J Mol Neurosci 70, 12441254.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sheng et al. supplementary material

Tables S1-S6

Download Sheng et al. supplementary material(File)
File 37.5 KB