We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
In the present study, we investigated the influence of different mid-stage N compensation timings on agronomic and physiological traits associated with grain yield and quality in field experiments. Two japonica rice cultivars with a good tasting quality (Nangeng 9108 and Nangeng 5055) were examined under eight N compensation timings (N1–N6: one-time N compensation at 7-2 weeks before heading; N7: split N compensation at 5 and 3 weeks before heading; N8: split N compensation at 4 and 2 weeks before heading) and a control with no N compensation. The highest yield was obtained with N7, followed by N3. The yield advantage is mainly attributable to the improved population structure (higher productive tiller rate with a stable number of effective panicles), higher total number of spikelets per unit area (large panicles with more grains per panicle), larger leaf area index in the late period and higher photosynthetic production capacity (more dry matter accumulation and transportation in the middle and late periods). Delaying N compensation timing improved the processing and nutritional quality of rice, but decreased the quality of appearance and cooking/eating traits. Our results suggest that, from the perspective of achieving relative coordination between high yield and high quality of japonica rice, the optimal N compensation should be divided equally at 5 and 3 weeks before heading. However, if simplifying the number of operations and the pursuit of eating quality were considered, one-time N compensation should be conducted at 5 weeks before heading.
This paper studied the use of eye movement data to form criteria for judging whether pilots perceive emergency information such as cockpit warnings. In the experiment, 12 subjects randomly encountered different warning information while flying a simulated helicopter, and their eye movement data were collected synchronously. Firstly, the importance of the eye movement features was calculated by ANOVA (analysis of variance). According to the sorting of the importance and the Euclidean distance of each eye movement feature, the warning information samples with different eye movement features were obtained. Secondly, the residual shrinkage network modules were added to CNN (convolutional neural network) to construct a DRSN (deep residual shrinkage networks) model. Finally, the processed warning information samples were used to train and test the DRSN model. In order to verify the superiority of this method, the DRSN model was compared with three machine learning models, namely SVM (support vector machine), RF (radom forest) and BPNN (backpropagation neural network). Among the four models, the DRSN model performed the best. When all eye movement features were selected, this model detected pilot perception of warning information with an average accuracy of 90.4%, of which the highest detection accuracy reached 96.4%. Experiments showed that the DRSN model had advantages in detecting pilot perception of warning information.
Based on erosion coupon tests, a sand erosion model for 17-4PH steel was developed. The developed erosion model was validated against the results of compressor erosion tests from a generic rig and from other researchers. A high-fidelity computational fluid dynamics (CFD) model of the test rig was built, a user-defined function was developed to implement the erosion model into the ANSYS CFD software, and the turbulent, two-phase flow-field in multiple reference frames was solved. The simulation results are consistent with the test results from the compressor rig and with experimental findings from other researchers. Specifically, the sand erosion blunts the leading edge, sharpens the trailing edge and increases pressure-surface roughness. The comparisons between the experimental observations and numerical results as well as a quantitative comparison with three other sand erosion models indicate that the developed sand erosion model is adequate for erosion prediction of engine components made of 17-4PH steel.
A new near-infrared direct acceleration mechanism driven by Laguerre–Gaussian laser is proposed to stably accelerate and concentrate electron slice both in longitudinal and transversal directions in vacuum. Three-dimensional simulations show that a 2-μm circularly polarized ${\mathrm{LG}}_p^l$ (p = 0, l = 1, σz = −1) laser can directly manipulate attosecond electron slices in additional dimensions (angular directions) and give them annular structures and angular momentums. These annular vortex attosecond electron slices are expected to have some novel applications such as in the collimation of antiprotons in conventional linear accelerators, edge-enhancement electron imaging, structured X-ray generation, and analysis and manipulation of nanomaterials.
Coronavirus disease 2019 (COVID-19) pandemic is a major public health concern all over the world. Little is known about the impact of COVID-19 pandemic on mental health in the general population. This study aimed to assess the mental health problems and associated factors among a large sample of college students during the COVID-19 outbreak in China.
Methods
This cross-sectional and nation-wide survey of college students was conducted in China from 3 to 10 February 2020. A self-administered questionnaire was used to assess psychosocial factors, COVID-19 epidemic related factors and mental health problems. Acute stress, depressive and anxiety symptoms were measured by the Chinese versions of the impact of event scale-6, Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. Univariate and hierarchical logistic regression analyses were performed to examine factors associated with mental health problems.
Results
Among 821 218 students who participated in the survey, 746 217 (90.9%) were included for the analysis. In total, 414 604 (55.6%) of the students were female. About 45% of the participants had mental health problems. The prevalence rates of probable acute stress, depressive and anxiety symptoms were 34.9%, 21.1% and 11.0%, respectively. COVID-19 epidemic factors that were associated with increased risk of mental health problems were having relatives or friends being infected (adjusted odds ratio = 1.72–2.33). Students with exposure to media coverage of the COVID-19 ≥3 h/day were 2.13 times more likely than students with media exposure <1 h/day to have acute stress symptoms. Individuals with low perceived social support were 4.84–5.98 times more likely than individuals with high perceived social support to have anxiety and depressive symptoms. In addition, senior year and prior mental health problems were also significantly associated with anxiety or/and depressive symptoms.
Conclusions
In this large-scale survey of college students in China, acute stress, anxiety and depressive symptoms are prevalent during the COVID-19 pandemic. Multiple epidemic and psychosocial factors, such as family members being infected, massive media exposure, low social support, senior year and prior mental health problems were associated with increased risk of mental health problems. Psychosocial support and mental health services should be provided to those students at risk.
A study of low-speed streaks (LSSs) embedded in the near-wall region of a turbulent boundary layer is performed using selective visualization and analysis of time-resolved tomographic particle image velocimetry (tomo-PIV). First, a three-dimensional velocity field database is acquired using time-resolved tomo-PIV for an early turbulent boundary layer. Second, detailed time-line flow patterns are obtained from the low-order reconstructed database using ‘tomographic visualizations’ by Lagrangian tracking. These time-line patterns compare remarkably well with previously observed patterns using hydrogen bubble flow visualization, and allow local identification of LSSs within the database. Third, the flow behaviour in proximity to selected LSSs is examined at varying wall distances ($10 < y^+ < 100$) and assessed using time-line and material surface evolution, to reveal the flow structure and evolution of a streak, and the flow structure evolving from streak development. It is observed that three-dimensional wave behaviour of the detected LSSs appears to develop into associated near-wall vortex flow structures, in a process somewhat similar to transitional boundary layer behaviour. Fourth, the presence of Lagrangian coherent structures is assessed in proximity to the LSSs using a Lagrangian-averaged vorticity deviation process. It is observed that quasi-streamwise vortices, adjacent to the sides of the streak-associated three-dimensional wave, precipitate an interaction with the streak. Finally, a hypothesis based on the behaviour of soliton-like coherent structures is made which explains the process of LSS formation, bursting behaviour and the generation of hairpin vortices. Comparison with other models is also discussed.
Soybean meal is rich in soybean isoflavones, which exhibit antioxidant, anti-inflammatory, antiviral and anticancer functions in humans and animals. This study was conducted to investigate the effects of soybean isoflavones on the growth performance, intestinal morphology and antioxidative properties in pigs. A total of 72 weaned piglets (7.45 ± 0.13 kg; 36 males and 36 females) were allocated into three treatments and fed corn-soybean meal (C-SBM), corn-soy protein concentrate (C-SPC) or C-SPC supplemented with equal levels of the isoflavones found in the C-SBM diet (C-SPC + ISF) for a 72-day trial. Each treatment had six replicates and four piglets per replicate, half male and half female. On day 42, one male pig from each replicate was selected and euthanized to collect intestinal samples. The results showed that compared to pigs fed the C-SPC diet, pigs fed the C-SBM and C-SPC + ISF diets had higher BW on day 72 (P < 0.05); pigs fed the C-SBM diet had significantly higher average daily gain (ADG) during days 14 to 28 (P < 0.05), with C-SPC + ISF being intermediate; pigs fed the C-SBM diet tended to have higher ADG during days 42 to 72 (P = 0.063), while pigs fed the C-SPC + ISF diet had significantly higher ADG during days 42 to 72 (P < 0.05). Moreover, compared to pigs fed the C-SPC diet, pigs fed the C-SBM diet tended to have greater villus height (P = 0.092), while pigs fed the C-SPC + ISF diet had significantly greater villus height (P < 0.05); pigs fed the C-SBM and C-SPC + ISF diets had significantly increased villus height-to-crypt depth ratio (P < 0.05). Compared with the C-SPC diet, dietary C-SPC + ISF tended to increase plasma superoxide dismutase activity on days 28 (P = 0.085) and 42 (P = 0.075) and reduce plasma malondialdehyde (MDA) content on day 42 (P = 0.089), as well as significantly decreased jejunal mucosa MDA content on day 42 (P < 0.05). However, no significant difference in the expression of tight junction genes among the three groups was found (P > 0.05). In conclusion, our results suggest that a long-term exposure to soybean isoflavones enhances the growth performance, protects the intestinal morphology and improves the antioxidative properties in pigs.
The meat quality of chicken is an important factor affecting the consumer’s health. It was hypothesized that n-3 polyunsaturated fatty acid (n-3 PUFA) could be effectively deposited in chicken, by incorporating antioxidation of soybean isoflavone (SI), which led to improved quality of chicken meat for good health of human beings. Effects of partial or complete dietary substitution of lard (LA) with linseed oil (LO), with or without SI on growth performance, biochemical indicators, meat quality, fatty acid profiles, lipid-related health indicators and gene expression of breast muscle were examined in chickens. A total of 900 males were fed a corn–soybean meal diet supplemented with 4% LA, 2% LA + 2% LO and 4% LO and the latter two including 30 mg SI/kg (2% LA + 2% LO + SI and 4% LO + SI) from 29 to 66 days of age; each of the five dietary treatments included six replicates of 30 birds. Compared with the 4% LA diet, dietary 4% LO significantly increased the feed efficiency and had no negative effect on objective indices related to meat quality; LO significantly decreased plasma triglycerides and total cholesterol (TCH); abdominal fat percentage was significantly decreased in birds fed the 4% LO and 4% LO + SI diets. Chickens with LO diets resulted in higher contents of α-linolenic acid (C18:3n-3), EPA (C20:5n-3) and total n-3 PUFA, together with a lower content of palmitic acid (C16:0), lignoceric acid (C24:0), saturated fatty acids and n-6:n-3 ratio in breast muscle compared to 4% LA diet (P < 0.05); they also significantly decreased atherogenic index, thrombogenic index and increased the hypocholesterolemic to hypercholesterolemic ratio. Adding SI to the LO diets enhanced the contents of EPA and DHA (C22:6n-3), plasma total superoxide dismutase, reduced glutathione (GSH)/oxidized glutathione and muscle GSH content, while decreased plasma total triglyceride and TCH and malondialdehyde content in plasma and breast muscle compared to its absence (P < 0.05). Expression in breast muscle of fatty acid desaturase 1 (FADS1), FADS2, elongase 2 (ELOVL2) and ELOVL5 genes were significantly higher with the LO diets including SI than with the 4% LA diet. Significant interactions existed between LO level and inclusion of SI on EPA and TCH contents. These findings indicate that diet supplemented with LO combined with SI is an effective alternative when optimizing the nutritional value of chicken meat for human consumers.
Flexibility is one of the important mechanical performance parameters of stent. The flexibility of tapered stents, especially self-expanding tapered stents, remains unknown. In this study, we developed a new selfexpanding tapered stent for tapered arteries and performed a numerical investigation of stent flexibility by using finite element method. The effect of stent design parameters, including taper and link space width, on stent flexibility was studied. The flexibility of the proposed stent was also compared with that of traditional cylindrical stents. Results show that the tapered stent is more flexible than the traditional cylindrical stent. Furthermore, the flexibility of the tapered stent increases with increasing stent taper and stent link space width. The increase in the stent link space width can contribute to the reduction in the peak stress. Therefore, tapered stents with high link space width will improve the stent flexibility. This work provides useful information for improvement of stent design and clinical selection.
There seems to be geographical differences in decisions about breast conserving surgery (BCS) in breast cancer patients. This study was to evaluate patients’ attitude to BCS and to assess the factors affecting cancer practice in West China.
Methods:
A structured questionnaire was distributed to 184 patients, eliciting information about the patients’ characteristics, occupation, education, family life, recognition of illness, knowledge about BCS, the main means of gaining surgery information, selecting surgery approaches, preferences to breast reservation.
Results:
In all, 163 patients completed the questionnaire. The results indicated that only 7.4% of patients received BCS and 23% of the remaining patients desired to have BCS and the affecting factors were significantly associated with their family life, recognition of illness and the main means of gaining surgery information (P < 0.05). No associations were between BCS selecting and the other variables studied. The most frequent reasons for selecting BCS were keeping the female shape and improving quality of life (71%), the second most were postoperative recovery, minimal influence of physical function (47%) and patients’ knowledge about BCS (42%). The most frequent reasons for not selecting BCS were uncertainty about BCS results and worry about recurrence (81%), the second most was the elderly age unnecessary for BCS (40%).
Conclusions:
The findings indicate that breast cancer patients in West China do not take BCS as the first choice as the best treatment method. It is warranted that further study of more patients, attitude of patients’ partners and physicians to BCS.
Planning ability as a critical component of executive function has been used to investigate prefrontal cortex (PFC) function in Schizophrenia patients by several neuroimaging studies. However, the changes of PFC activation after effective antipsychotic treatment are still unclear.
Objective:
The aim of this study is to explore whether there is any variation in the prefrontal hemodynamic response during Tower of London test after 6 weeks’ antipsychotic treatment in schizophrenia patients, and the relationship between the changes in PFC activation and some demographic factors as well as the severity of the patients’ psychiatric symptoms.
Method:
40 patients with first-episode schizophrenia were recruited for the present study. 28-channel NIRS (near infrared spectroscopy) was used to measure changes in hemoglobin concentration in the prefrontal cortical surface area during Tower of London (TOL) test—a classic neuropsychological test for planning abilities. The patients were examined before treatment and after six weeks’ treatment with second-generation antipsychotic medicines.
Results:
After the short-term treatment, the patients’ TOL test performance and the activations in PFC during the task period did not differ from baseline (P>0.05), although the psychiatric symptoms of the patients were improved significantly(positive subscale score 18.25±2.86 & 12.75±2.60; general psychopathology 33.67±3.65 & 27.00±3.67; PANSS total score 72.25±7.07 & 55.42±7.53; P<0.001).
Conclusion:
It suggests that the impairment of cognitive function and the function of the PFC of schizophrenia patients would not be improved with the improvement of psychiatric symptoms, as further support the hypothesis that PFC damage is a durable impairment for schizophrenia.
Emerging evidences indicate that the alteration of interhemispheric functional coordination may be involved in the pathogenesis of major depressive disorder (MDD). In present study, we aim to explore the potential marker by using the voxel-mirrored homotopic connectivity (VMHC) approach, which may be contributing to predict the clinical prognosis in MDD.
Methods
Eighty-two MDD patients and 50 normal control (NC) subjects participated in this study. We divided the MDD group into unremitted and remitted group according to the reduction rate of Hamilton Rating Scale for Depression (HAMD) within 2 weeks.
Results
The study detected significantly decreased VMHC in bilateral precuneus (pCu), inferior temporal gyrus (ITG) and increased VMHC in middle frontal gyrus (MFG) and caudate nucleus when compared remitted depression (RD) group to unremitted depression (URD) group. Meanwhile, when compared with NC group, the URD group presented reduced VMHC in bilateral cerebellum anterior lobe, thalamus and postcentral gyrus. Furthermore, the VHMC in media frontal gyrus, postcentral gyrus and precentral gyrus were significantly decreased in RD group. Correlation analysis suggested that reduced VMHC in bilateral pCu was negatively correlated with the baseline HAMD score of URD (r = −0.325, P = 0.041). Receiver operating characteristic (ROC) curve indicated that three regional VMHC changes could identify depressed patient with poorer treatment response: ITG [area under curve (AUC) = 0.699, P = 0.002, 95% CI = 0.586–0.812], MFG (AUC = 0.692, P = 0.003, 95% CI = 0.580–0.805), pCu (AUC = 0.714, P = 0.001, 95% CI = 0.603–0.825).
Conclusion
The current study combined with previous evidence indicates that the subdued intrinsic interhemispheric functional connectivity might represents a novel neural trait involved in the pathophysiology of MDD.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
The beginning of laminar–turbulent transition is usually associated with a wave-like disturbance, but its evolution and role in precipitating the development of other flow structures are not well understood from a structure-based view. Nonlinear parabolized stability equations (NPSE) were solved numerically to simulate the transition of K-regime, N-regime and O-regime. However, only the K-regime transition was examined experimentally using both hydrogen bubble visualization and time-resolved tomographic particle image velocimetry (tomo-PIV). Based on the ‘NPSE visualization’ and ‘tomographic visualization’, at least four common characteristics of the generic transition process were identified: (i) inflectional regions representing high-shear layers (HSL) that develop in vertical velocity profiles, accompanied by ejection–sweep behaviours; (ii) low-speed streak (LSS) patterns, manifested in horizontal timelines, that seem to consist of several three-dimensional (3-D) waves; (iii) a warped wave front (WWF) pattern, displaying multiple folding processes, which develops adjacent to the LSS in the near-wall region, prior to the appearance of 𝛬-vortices; (iv) a coherent 3-D wave front, similar to a soliton, in the upper boundary layer, accompanied by regions of depression along the flanks of the wave. It was determined that the amplification and lift-up of a 3-D wave causes the development of the HSL, WWF and multiple folding behaviour of material surfaces, that all contribute to the development of a 𝛬-vortex. The amplified 3-D wave is hypothesized as a soliton-like coherent structure. Based on our results, a path to transition is proposed, which hypothesizes the function of the WWF in boundary-layer transition.
The fatty acid composition of chicken’s meat is largely influenced by dietary lipids, which are often used as supplements to increase dietary caloric density. The underlying key metabolites and pathways influenced by dietary oils remain poorly known in chickens. The objective of this study was to explore the underlying metabolic mechanisms of how diets supplemented with mixed or a single oil with distinct fatty acid composition influence the fatty acid profile in breast muscle of Qingyuan chickens. Birds were fed a corn-soybean meal diet supplemented with either soybean oil (control, CON) or equal amounts of mixed edible oils (MEO; soybean oil : lard : fish oil : coconut oil = 1 : 1 : 0.5 : 0.5) from 1 to 120 days of age. Growth performance and fatty acid composition of muscle lipids were analysed. LC-MS was applied to investigate the effects of CON v. MEO diets on lipid-related metabolites in the muscle of chickens at day 120. Compared with the CON diet, chickens fed the MEO diet had a lower feed conversion ratio (P < 0.05), higher proportions of lauric acid (C12:0), myristic acid (C14:0), palmitoleic acid (C16:1n-7), oleic acid (C18:1n-9), EPA (C20:5n-3) and DHA (C22:6n-3), and a lower linoleic acid (C18:2n-6) content in breast muscle (P < 0.05). Muscle metabolome profiling showed that the most differentially abundant metabolites are phospholipids, including phosphatidylcholines (PC) and phosphatidylethanolamines (PE), which enriched the glycerophospholipid metabolism (P < 0.05). These key differentially abundant metabolites – PC (14:0/20:4), PC (18:1/14:1), PC (18:0/14:1), PC (18:0/18:4), PC (20:0/18:4), PE (22:0/P-16:0), PE (24:0/20:5), PE (22:2/P-18:1), PE (24:0/18:4) – were closely associated with the contents of C12:0, C14:0, DHA and C18:2n-6 in muscle lipids (P < 0.05). The content of glutathione metabolite was higher with MEO than CON diet (P < 0.05). Based on these results, it can be concluded that the diet supplemented with MEO reduced the feed conversion ratio, enriched the content of n-3 fatty acids and modified the related metabolites (including PC, PE and glutathione) in breast muscle of chickens.
The effect of hot streaks from a gas turbine combustor on the thermodynamic load of internally air-cooled nozzle guide vanes (NGVs) and shrouds has been numerically investigated under flight conditions. The study follows two steps: one for the high-fidelity 60° combustor sector with simplified ten NGVs and three thermocouples attached; and the other for the NGV sectors where each sector consists of one high-fidelity NGV (probe NGV) and nine dummy NGVs. The first step identifies which NGV has the highest thermal load and provides the inlet flow boundary conditions for the second step. In the second step, the flow fields and thermal loads of the probe NGVs are resolved in detail.
With the systematically validated physical models, the two-phase flowfield of the combustor-NGVs sector has been successfully simulated. The predicted mean and maximum temperature at the combustor sector exit are in excellent agreement with the experimental data, which provides a solid basis for the hot-streak effect investigation. The results indicate that the second NGV, looking upstream from left, has the highest thermal load. Its maximum surface temperature is 8.4% higher than that for the same NGV but with the mean inlet boundary conditions, and 14.1% higher than the ninth NGV. The finding is consistent with the field-observed NGV damage pattern. To extend the service life of these vulnerable NGVs, some protection methods should be considered.
Copy number variations (CNVs), as an important source of genetic variation, can affect a wide range of phenotypes by diverse mechanisms. The somatostatin receptor 2 (SSTR2) gene plays important roles in cell proliferation and apoptosis. Recently, this gene was mapped to a CNV region, which encompasses quantitative trait loci of cattle economic traits including body weight, marbling score, etc. Therefore, SSTR2 CNV may exhibit phenotypic effects on cattle growth traits. In the current study, distribution of SSTR2 gene CNVs was investigated in six Chinese cattle breeds (XN, QC, NY, JA, LX and PN), and the results showed higher CNV polymorphisms in XN, QC and NY cattle. Next, association analysis between growth traits and SSTR2 CNV was performed for XN, QC and NY cattle. In NY, individuals with fewer copies showed better performance than those with more copies. Further, the effects of SSTR2 CNV on the SSTR2 mRNA level were also investigated, but revealed no significant correlation in either muscle or adipose tissue of adult NY cattle. The results suggested the potential for use of SSTR2 CNV as a marker for the molecular breeding of NY cattle.
Laser interaction with an ultra-thin pre-structured target is investigated with the help of both two-dimensional and three-dimensional particle-in-cell simulations. With the existence of a periodic structure on the target surface, the laser seems to penetrate through the target at its fundamental frequency even if the plasma density of the target is much higher than the laser’s relativistically critical density. The particle-in-cell simulations show that the transmitted laser energy behind the pre-structured target is increased by about two orders of magnitude compared to that behind the flat target. Theoretical analyses show that the transmitted energy behind the pre-structured target is actually re-emitted by electron ‘islands’ formed by the surface plasma waves on the target surfaces. In other words, the radiation with the fundamental frequency is actually ‘surface emission’ on the target rear surface. Besides the intensity of the component with the fundamental frequency, the intensity of the high-order harmonics behind the pre-structured target is also much enhanced compared to that behind the flat target. The enhancement of the high-order harmonics is also related to the surface plasma waves generated on the target surfaces.
Sodium and chloride are the key factors maintaining normal osmotic pressure (OSM) and volume of the extracellular fluid, and influencing the acid–base balance of body fluids. The experiment was conducted to investigate the effects of dietary Na+ and Cl− level on growth performance, excreta moisture, blood biochemical parameters, intestinal Na+–glucose transporter 1 (SGLT1) messenger RNA (mRNA), and Na+–H+ exchanger 2 (NHE2) mRNA, and to estimate the optimal dietary sodium and chlorine level for yellow-feathered chickens from 22 to 42days. A total of 900 22-day-old Lingnan yellow-feathered male chickens were randomly allotted to five treatments, each of which included six replicates of 30 chickens per floor pen. The basal control diet was based on corn and soybean meal (without added NaCl and NaHCO3). Treatments 2 to 5 consisted of the basal diet supplemented with equal weights of Na+ and Cl−, constituting 0.1%, 0.2%, 0.3% and 0.4% of the diets. Supplemental dietary Na+ and Cl− improved the growth performance (P<0.05). Average daily gain (ADG) showed a quadratic broken-line regression to increasing dietary Na+ and Cl− (R2=0.979, P<0.001), and reached a plateau at 0.1%. Supplemental Na+ and Cl− increased (P<0.05) serum Na+ and OSM in serum and showed a quadratic broken-line regression (R2=0.997, P=0.004) at 0.11%. However, supplemental Na+ and Cl− decreased (P<0.05) serum levels of K+, glucose (GLU) and triglyceride. Higher levels of Na+and Cl− decreased duodenal NHE2 transcripts (P<0.05), but had no effect on ileal SGLT1 transcripts. The activity of Na+ /K+-ATPase in the duodenum decreased (P<0.05) with higher levels of dietary Na+ and Cl−. In conclusion, the optimal dietary Na+ and Cl− requirements for yellow-feathered chickens in the grower phase, from 22 to 42 days of age, to optimize ADG, serum Na+, OSM, K+ and GLU were 0.10%, 0.11%, 0.11%,0.17% and 0.16%, respectively, by regression analysis.