We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The immobilization of soluble Cs from spent fuel elements by ion exchange and direct chemical reaction with clay minerals or shales was investigated under hydrothermal conditions. Various clay minerals or shales were reacted with likely Cs sources and water at 300 bars pressure and 100°, 200°, and 300°C for 4, 2, and 1 months, respectively. Pollucite was the principal product, but CsAlSiO4 was also observed, along with unreacted or hydrothermally altered aluminosilicates. From Cs concentrations of the product solutions partition of Cs between liquid and solids was found to vary depending on the Cs source, the clay or shale phase, temperature, and run duration. For example, illite-Cs2MoO4 interactions resulted in 19, 32, and 95% fixation of added Cs at 100°, 200°, and 300°C respectively. Fixation of as much as 97% of the Cs in some solids was observed. In addition to Cs-aluminosilicates, Cs was fixed on cation-exchange sites by interlayer collapse in montmorillonite. Reactions with Cs2MoO4 also produced powellite because Ca was available in the reaction mixture. The U6+ from β-Cs2U2O7 was reduced to form uraninite by sulfide- and/or organic-rich shales. (Cs,Na)2(UO2)(Si2O5)3·4H2O, an analog of weeksite, was produced in reactions with β-Cs2U2O7. The reaction products pollucite and uraninite can immobilize much of the Cs and U from spent fuel elements because Cs in pollucite is extremely difficult to exchange and U in uraninite is insoluble.
Reactions of Sr, La, and Nd (the latter two elements simulating Am and Cm) with potential backfill minerals for radioactive waste storage and with repository wall rocks, such as shale, were investigated under simulated repository conditions of 200° and 300°C for 12 weeks under a confining pressure of 30 MPa. The solid and solution reaction products were characterized to determine the nature and extent of reaction. Chlorite, illite, kaolinite, montmorillonite, mordenite, and clinoptilolite and four shales removed as much as 61.2 and 98.5% of the added SrCl2 and Sr(OH)2 from solution, respectively, by ion exchange and/or by forming new strontium compounds such as SrAl2Si2O8, Sr2MgSi2O7, SrCO3 (strontianite), and SrAl2Si4O12·2H2O (Sr-wairakite). The formation of these sparingly soluble Sr phases by the reaction of the soluble Sr compounds with such backfill materials indicates that the backfill may serve as a barrier during the thermal period of the waste in the life of a repository. These same minerals and shales removed as much as 99.99% of the added La or Nd from solution at 300°C by forming new phases such as LaOHCO3, NdOHCO3, and possibly La or Nd oxides and hydroxides. Zeolites reacted with La and Nd to form smectite. Thus, if La and Nd truly simulate the reactivity of Am and Cm, properly designed backfills can serve as a barrier to the migration of transuranic elements of nuclear wastes.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Common Law, Civil Law, and Colonial Law builds upon the legal historian F.W. Maitland's famous observation that history involves comparison, and that those who ignore every system but their own 'hardly came in sight of the idea of legal history'. The extensive introduction addresses the intellectual challenges posed by comparative approaches to legal history. This is followed by twelve essays derived from papers delivered at the 24th British Legal History Conference. These essays explore patterns in legal norms, processes, and practice across an exceptionally broad chronological and geographical range. Carefully selected to provide a network of inter-connections, they contribute to our better understanding of legal history by combining depth of analysis with historical contextualization. This title is also available as Open Access on Cambridge Core.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.