We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An easy-to-understand course book, based on the authentic lectures and detailed research, conducted by the authors themselves, on information optics, holography and MATLAB. This book is the first to highlight the incoherent optical system, provide up-to-date, novel digital holography techniques, and demonstrate MATLAB codes to accomplish tasks such as optical image processing and pattern recognition. This title is a comprehensive introduction to the basics of Fourier optics as well as optical image processing and digital holography. A step-by-step guide which details the vast majority of the derivations, without omitting essential steps, to facilitate a clear mathematical understanding. This book also features exercises at the end of each chapter, providing hands-on experience and consolidating understanding. An ideal companion for graduates and researchers involved in engineering and applied physics, as well as interested in the growing field of information optics.
To investigate the correlation between ventricular pre-excitation-related dyssynchrony, on cardiac dysfunction, and recovery.
Methods and Results:
This study included 76 children (39 boys and 37 girls) with a median age of 5.25 (2.67–10.75) years. The patients with pre-excitation-related cardiac dysfunction (cardiac dysfunction group, n = 34) had a longer standard deviation of the time-to-peak systolic strain of the left ventricle and larger difference between the maximum and minimum times-to-peak systolic strain than those with a normal cardiac function (normal function group, n = 42) (51.77 ± 24.70 ms versus 33.29 ± 9.48 ms, p < 0.05; 185.82 ± 92.51 ms versus 111.93 ± 34.27 ms, p < 0.05, respectively). The cardiac dysfunction group had a maximum time-to-peak systolic strain at the basal segments of the anterior and posterior septa and the normal function group at the basal segments of anterolateral and posterolateral walls. The prevalence of ventricular septal dyssynchrony in the cardiac dysfunction group was significantly higher than that in the normal function group (94.1% (32/34) versus 7.7% (3/42), p < 0.05). The patients with ventricular septal dyssynchrony (n = 35) had a significantly higher prevalence of intra-left ventricular systolic dyssynchrony than those with ventricular septal synchrony (n = 41) (57.1% (20/35) versus 14.6% (6/41), p < 0.05). During follow-up after pathway ablation, the patients who recovered from intra-left ventricular dyssynchrony (n = 29) had a shorter left ventricular ejection fraction recovery time than those who did not (n = 5) (χ2 = 5.94, p < 0.05). Among the patients who recovered, 93.1% (27/29) had a normalised standard deviation of the time-to-peak systolic strain and difference between the maximum and minimum times-to-peak systolic strain within 1 month after ablation.
Conclusion:
Ventricular pre-excitation may cause ventricular septal dyssynchrony; thus, attention must be paid to intra-left ventricular dyssynchrony and cardiac dysfunction. Whether intra-left ventricular systolic dyssynchrony can resolve within 1 month may be a new early predictor of patient prognosis.
The apple buprestid, Agrilus mali Matsumura, that was widespread in north-eastern China, was accidently introduced to the wild apple forest ecosystem in mountainous areas of Xinjiang, China. This invasive beetle feeds on domesticated apples and many species of Malus and presents a serious threat to ancestral apple germplasm sources and apple production worldwide. Estimating the potential area at risk of colonization by A. mali is crucial for instigating appropriate preventative management strategies, especially under global warming. We developed a CLIMEX model of A. mali to project this pest's potential distribution under current and future climatic scenarios in 2100 using CSIRO-Mk 3.0 GCM running the SRES A1B emissions scenario. Under current climate, A. mali could potentially invade neighbouring central Asia and eventually the mid-latitude temperate zone, and some subtropical areas and Pampas Steppe in the Southern Hemisphere. This potential distribution encompasses wild apples species, the ancestral germplasm for domesticated apples. With global warming, the potential distribution shifts to higher latitudes, with the potential range expanding slightly, though the overall suitability could decline in both hemispheres. In 2100, the length of the growing season of this pest in the mid-latitude temperature zone could increase by 1–2 weeks, with higher growth rates in most sites compared with current climate in mid-latitudes, at least in China. Our work highlights the need for strategies to prevent the spread of this pest, managing the threats to wild apples in Tian Shan Mountain forests in Central Asia, and commercial apple production globally. We discuss practical management tactics to reduce the spread of this pest and mitigate its impacts.
Mounting evidence showed that insula contributed to the neurobiological mechanism of suicidal behaviors in bipolar disorder (BD). However, no studies have analyzed the dynamic functional connectivity (dFC) of insular Mubregions and its association with personality traits in BD with suicidal behaviors. Therefore, we investigated the alterations of dFC variability in insular subregions and personality characteristics in BD patients with a recent suicide attempt (SA).
Methods
Thirty unmedicated BD patients with SA, 38 patients without SA (NSA) and 35 demographically matched healthy controls (HCs) were included. The sliding-window analysis was used to evaluate whole-brain dFC for each insular subregion seed. We assessed between-group differences of psychological characteristics on the Minnesota Multiphasic Personality Inventory-2. Finally, a multivariate regression model was adopted to predict the severity of suicidality.
Results
Compared to NSA and HCs, the SA group exhibited decreased dFC variability values between the left dorsal anterior insula and the left anterior cerebellum. These dFC variability values could also be utilized to predict the severity of suicidality (r = 0.456, p = 0.031), while static functional connectivity values were not appropriate for this prediction. Besides, the SA group scored significantly higher on the schizophrenia clinical scales (p < 0.001) compared with the NSA group.
Conclusions
Our findings indicated that the dysfunction of insula–cerebellum connectivity may underlie the neural basis of SA in BD patients, and highlighted the dFC variability values could be considered a neuromarker for predictive models of the severity of suicidality. Moreover, the psychiatric features may increase the vulnerability of suicidal behavior.
Previous studies have demonstrated structural and functional changes of the hippocampus in patients with major depressive disorder (MDD). However, no studies have analyzed the dynamic functional connectivity (dFC) of hippocampal subregions in melancholic MDD. We aimed to reveal the patterns for dFC variability in hippocampus subregions – including the bilateral rostral and caudal areas and its associations with cognitive impairment in melancholic MDD.
Methods
Forty-two treatment-naive MDD patients with melancholic features and 55 demographically matched healthy controls were included. The sliding-window analysis was used to evaluate whole-brain dFC for each hippocampal subregions seed. We assessed between-group differences in the dFC variability values of each hippocampal subregion in the whole brain and cognitive performance on the MATRICS Consensus Cognitive Battery (MCCB). Finally, association analysis was conducted to investigate their relationships.
Results
Patients with melancholic MDD showed decreased dFC variability between the left rostral hippocampus and left anterior lobe of cerebellum compared with healthy controls (voxel p < 0.005, cluster p < 0.0125, GRF corrected), and poorer cognitive scores in working memory, verbal learning, visual learning, and social cognition (all p < 0.05). Association analysis showed that working memory was positively correlated with the dFC variability values of the left rostral hippocampus-left anterior lobe of the cerebellum (r = 0.338, p = 0.029) in melancholic MDD.
Conclusions
These findings confirmed the distinct dynamic functional pathway of hippocampal subregions in patients with melancholic MDD, and suggested that the dysfunction of hippocampus-cerebellum connectivity may be underlying the neural substrate of working memory impairment in melancholic MDD.
While many studies have investigated the effect of task complexity on L2 writing, little has been reported on the effects of intended task complexity manipulations on task-generated cognitive demands in L2 writing. This study, therefore, was designed to examine the relative effects of task complexity and cognitive demands on students’ L2 writing. Two argumentative writing tasks were manipulated with varying numbers of elements and reasoning demands to be distinguished either as a simple or complex writing task. Self-ratings and dual-task methodology were adopted to validate the manipulations of task complexity. Thirty-one L2 learners, in the single-task group, were asked to complete two writing tasks and a post-task questionnaire. Participants in the dual-task conditions (30 in Experimental 1 and 31 in Experimental 2) were required to simultaneously complete the primary writing tasks and the secondary tasks. Results from self-ratings and dual-task experiments supported the efficacy of the task complexity manipulations.
Salicylic acid (SA), a phytohormone, has been considered to be a key regulator mediating plant defence against pathogens. It is still vague how SA activates plant defence against herbivores such as chewing and sucking pests. Here, we used an aphid-susceptible wheat variety to investigate Sitobion avenae response to SA-induced wheat plants, and the effects of exogenous SA on some defence enzymes and phenolics in the plant immune system. In SA-treated wheat seedlings, intrinsic rate of natural increase (rm), fecundity and apterous rate of S. avenae were 0.25, 31.4 nymphs/female and 64.4%, respectively, and significantly lower than that in the controls (P < 0.05). Moreover, the increased activities of phenylalanine-ammonia-lyase, polyphenol oxidase (PPO) and peroxidase in the SA-induced seedlings obviously depended on the sampling time, whereas activities of catalase and 4-coumarate:CoA ligase were suppressed significantly at 24, 48 and 72 h in comparison with the control. Dynamic levels of p-coumaric acid at 96 h, caffeic acid at 24 and 72 h and chlorogenic acid at 24, 48 and 96 h in wheat plants were significantly upregulated by exogenous SA application. Nevertheless, only caffeic acid content was positively correlated with PPO activity in SA-treated wheat seedlings (P = 0.031). These findings indicate that exogenous SA significantly enhanced the defence of aphid-susceptible wheat variety against aphids by regulating the plant immune system, and may prove a potential application of SA in aphid control.
Anticipatory pleasure deficits are closely correlated with negative symptoms in schizophrenia, and may be found in both clinical and subclinical populations along the psychosis continuum. Prospection, which is an important component of anticipatory pleasure, is impaired in individuals with social anhedonia (SocAnh). In this study, we examined the neural correlates of envisioning positive future events in individuals with SocAnh.
Methods
Forty-nine individuals with SocAnh and 33 matched controls were recruited to undergo functional MRI scanning, during which they were instructed to simulate positive or neutral future episodes according to cue words. Two stages of prospection were distinguished: construction and elaboration.
Results
Reduced activation at the caudate and the precuneus when prospecting positive (v. neutral) future events was observed in individuals with SocAnh. Furthermore, compared with controls, increased functional connectivity between the caudate and the inferior occipital gyrus during positive (v. neutral) prospection was found in individuals with SocAnh. Both groups exhibited a similar pattern of brain activation for the construction v. elaboration contrast, regardless of the emotional context.
Conclusions
Our results provide further evidence on the neural mechanism of anticipatory pleasure deficits in subclinical individuals with SocAnh and suggest that altered cortico-striatal circuit may play a role in anticipatory pleasure deficits in these individuals.
The aim of this study was to assess the current status of disease-related knowledge and to analyze the relationship among the general condition, illness perception, and psychological status of patients with coronavirus disease 2019 (COVID-19).
Methods:
A hospital-based cross-sectional study was conducted on 118 patients using convenience sampling. The general questionnaire, disease-related knowledge questionnaire of COVID-19, Illness Perception Questionnaire (IPQ), and Profile of Mood States (POMS) were used to measure the current status of participants.
Results:
The overall average score of the disease-related knowledge of patients with COVID-19 was (79.19 ± 14.25), the self-care situation was positively correlated with knowledge of prevention and control (r = 0.265; P = 0.004) and total score of disease-related knowledge (r = 0.206; P = 0.025); the degree of anxiety was negatively correlated with the knowledge of diagnosis and treatment (r = −0.182; P = 0.049). The score of disease-related knowledge was negatively correlated with negative cognition (volatility, consequences, emotional statements) and negative emotions (tension, fatigue, depression) (P < 0.05); positively correlated with positive cognition (disease coherence) and positive emotion (self-esteem) (P < 0.05).
Conclusions:
It was recommended that we should pay more attention to the elderly and low-income groups, and increase the knowledge about diagnosis and treatment of COVID-19 and self-care in the future health education for patients.
This paper presents a general framework for human-like motion control of 7-DOF S-R-S-redundant manipulators. The new framework simultaneously accomplishes five objectives: Cartesian trajectory tracking, obstacle avoidance, joint limit avoidance, human-like movement, and a feasibility evaluation of the Cartesian trajectory.We exhaustively compute all feasible arm configurations. This allows for quick evaluations of the feasibility of the Cartesian trajectories. They are applied to inverse kinematics of the redundant manipulator to improve the capability to handle multiple constraints, and enable the manipulator to imitate human movements. The efficiency of the proposed framework is demonstrated by kinematic experiments with a humanoid robot.
Much progress has been made in understanding the environmental and hormonal systems regulating winter diapause. However, transcriptional regulation of summer diapause is still largely unknown, making it difficult to understand an all-around regulation profile of seasonal adaptation. To bridge this gap, comparison RNA-seq to profile the transcriptome and to examine differential gene expression profiles between non-diapause, summer diapause, and winter diapause groups were performed. A total number of 113 million reads were generated and assembled into 79,117 unigenes, with 37,492 unigenes categorized into 58 functional gene ontology groups, 25 clusters of orthologous group categories, and 256 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG analysis mapped 2108 differentially expressed genes to 48 and 67 pathways for summer and winter diapauses, respectively. Enrichment statistics showed that 11 identical pathways similarly overlapped in the top 20 enriched functional groups both related to summer and winter diapauses. We also identified 35 key candidate genes for universal and differential functions related to summer and winter diapause preparation. Furthermore, we identified some genes involved in the signaling and metabolic pathways that may be the key drivers to integrate environmental signals into the summer and winter diapause preparation. The current study provided valuable insights into global molecular mechanisms underpinning diapause preparation.
Carotenoids are increasingly being implicated to have an important role in brain and eye development. This study aimed to quantify the content and profile of carotenoids in human breast milk, maternal plasma and neonatal umbilical cord plasma in Chengdu, an urban area in Southwest China. In this study, fifty-four healthy mothers were enrolled. Maternal blood, umbilical cord blood, colostrum, transitional milk and mature milk were collected. Concentrations of carotenoids (lutein, zeaxanthin, β-cryptoxanthin, β-carotene and lycopene) were analysed by HPLC. We found that carotenoid concentrations decreased from colostrum to mature milk. Hydrocarbon carotenoids with weaker polarity decreased more than the polar carotenoids. Lycopene concentrations dropped by 99 %, β-carotene by 92 %, β-cryptoxanthin by 83 %, lutein by 32 % and zeaxanthin by 22 %. Lycopene and β-carotene accounted for 70 % of the total carotenoids in colostrum, and lutein predominated amongst carotenoids in transitional milk and mature milk (51–55 %). Carotenoid concentrations in maternal plasma were much higher than that in cord plasma. Lutein predominated in cord plasma. The concentrations of all carotenoids in maternal plasma were correlated with those of cord plasma and human milk. These results are consistent with selective transport mechanisms in the mammary gland related to the polarity of carotenoids, and each carotenoid has its own implications, which may have different priorities in the early life development of infants. These findings may help guide dietary recommendations for carotenoid inclusion in infant formulas.
Manure and chemical fertilizers have different effects on soil properties, the nitrogen cycle, and crop yield. This study aimed to investigate the effects of different fertilizer applications under the same N input on soil physicochemical properties and soil bacterial communities and to explain the contributions of soil properties to grain yield. Manure substitution of chemical fertilizer was conducted in leaching monitoring systems. The study began in 2009 and sampling was carried out in 2014 and 2016. Three fertilizer treatments with the same total N, P, and K application rates and one control treatment were designed as follows: (1) CK, without nitrogen fertilizer; (2) 100%U, whole nitrogen coming from urea; (3) 100%M, whole nitrogen coming from composted cattle manure; and (4) 50%U + 50%M, half nitrogen from composted cattle manure and half nitrogen from urea. Soil organic carbon (SOC) content was positively correlated with total N (TN), NO3−–N, and NH4+–N contents, the mean weight diameter of soil aggregates, and the Shannon diversity index of bacteria, whereas SOC content was not significantly correlated with grain yield. NO3−–N content was positively correlated with grain yield. Substituting half the amount of chemical fertilizer with manure as a nitrogen source improved soil stability, increased bacterial diversity, and enhanced nitrogen supply, while reducing nitrogen loss from ammonia volatilization and nitrogen leaching. Substituting half the amount of chemical fertilizer with manure as a nitrogen source was a more sustainable way to increase grain yield through a sustainable nitrate supply and to reduce N loss.
A series of new synthetic armored cables were developed and tested to ensure that they were suitable for use with the RECoverable Autonomous Sonde (RECAS), which is a newly designed freezing-in thermal ice probe. The final version of the cable consists of two concentric conductors that can be used as the power and signal lines. Two polyfluoroalkoxy jackets are used for electrical insulation (one for insulation between conductors, and the other for insulation of the outer conductor). The outer insulation layer is coated by polyurethane jacket to seal the connections between the cable and electrical units. The 0.65 mm thick strength member is made from aramid fibers woven together. To hold these aramid fibers in place, a sheathing layer was produced from a polyamide fabric cover net. The outer diameter of the final version of the cable is ~6.1 mm. The permissible bending radius is as low as 17–20 mm. The maximal breaking force under straight tension is ~12.2 kN. The cable weight is only ~0.061 kg m−1. The mechanical and electrical properties and environmental suitability of the cable were determined through laboratory testing and joint testing with the probe.
Lead-free ferroelectric electrocaloric ceramics that could convert electrical energy into heat are the promising candidate for environment-friendly cooling devices. For refrigeration devices, a large temperature change (ΔT) and good temperature stability are required, which are highly related to the phase structure and the applied electric field. In this work, a diffused ferroelectric–paraelectric (FP) phase transition is formed in (K, Na)NbO3 (KNN) by using appropriate composition engineering. The relaxor ferroelectrics in this work present both a large ΔT of 1.24 K and a high ΔT/ΔE of 0.19 K mm/kV. In addition, a wide temperature span exceeds 55 °C at the high electrocaloric effect (ECE) criterion (ΔT ≥ 0.5 K) could also be observed. This work not only opens a new strategy for obtaining high-performance ceramics for refrigeration devices but also extends the application area of the KNN-based lead-free ferroelectrics from sensors, actuators and energy harvesting to solid-state cooling applications.
The present study investigated the association between fibre degradation and the concentration of dissolved molecular hydrogen (H2) in the rumen. Napier grass (NG) silage and corn stover (CS) silage were compared as forages with contrasting structures and degradation patterns. In the first experiment, CS silage had greater 48-h DM, neutral-detergent fibre (NDF) and acid-detergent fibre degradation, and total gas and methane (CH4) volumes, and lower 48-h H2 volume than NG silage in 48-h in vitro incubations. In the second experiment, twenty-four growing beef bulls were fed diets including 55 % (DM basis) NG or CS silages. Bulls fed the CS diet had greater DM intake (DMI), average daily gain, total-tract digestibility of OM and NDF, ruminal dissolved methane (dCH4) concentration and gene copies of protozoa, methanogens, Ruminococcus albus and R. flavefaciens, and had lower ruminal dH2 concentration, and molar proportions of valerate and isovalerate, in comparison with those fed the NG diet. There was a negative correlation between dH2 concentration and NDF digestibility in bulls fed the CS diet, and a lack of relationship between dH2 concentration and NDF digestibility with the NG diet. In summary, the fibre of CS silage was more easily degraded by rumen microorganisms than that of NG silage. Increased dCH4 concentration with the CS diet presumably led to the decreased ruminal dH2 concentration, which may be helpful for fibre degradation and growth of fibrolytic micro-organisms in the rumen.
Schizotypy refers to schizophrenia-like traits below the clinical threshold in the general population. The pathological development of schizophrenia has been postulated to evolve from the initial coexistence of ‘brain disconnection’ and ‘brain connectivity compensation’ to ‘brain connectivity decompensation’.
Methods
In this study, we examined the brain connectivity changes associated with schizotypy by combining brain white matter structural connectivity, static and dynamic functional connectivity analysis of diffusion tensor imaging data and resting-state functional magnetic resonance imaging data. A total of 87 participants with a high level of schizotypal traits and 122 control participants completed the experiment. Group differences in whole-brain white matter structural connectivity probability, static mean functional connectivity strength, dynamic functional connectivity variability and stability among 264 brain sub-regions of interests were investigated.
Results
We found that individuals with high schizotypy exhibited increased structural connectivity probability within the task control network and within the default mode network; increased variability and decreased stability of functional connectivity within the default mode network and between the auditory network and the subcortical network; and decreased static mean functional connectivity strength mainly associated with the sensorimotor network, the default mode network and the task control network.
Conclusions
These findings highlight the specific changes in brain connectivity associated with schizotypy and indicate that both decompensatory and compensatory changes in structural connectivity within the default mode network and the task control network in the context of whole-brain functional disconnection may be an important neurobiological correlate in individuals with high schizotypy.
The Antarctic subglacial drilling rig (ASDR) is designed to recover 105 mm-diameter ice cores up to 1400 m depth and 41.5 mm-diameter bedrock cores up to 2 m in length. In order to ensure safe and convenient drilling, drilling auxiliaries are designed to support fieldwork and servicing. These auxiliaries are subdivided into several systems for power supply, drill tripping in the borehole, ice core and chip processing, and drill servicing and maintenance. The required equipment also includes two generators, a drilling winch with a cable, logging winch with a cable, control desk, pipe handler with a fixed clamp, chip chamber vibrator, centrifuge, emergency devices and fitting and electrical tools. Additionally, several environmental protective measures such as a new liquid-tight casing with a thermal casing shoe and a bailing device for recovering drilling fluid from the borehole were designed. Most of the auxiliaries were tested during the summer of 2018–2019 near Zhongshan Station, East Antarctica while drilling to the bedrock to a depth of 198 m.