Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T23:05:57.467Z Has data issue: false hasContentIssue false

Effect of the SiO2/Al2O3 Molar Ratio on the Microstructure and Properties of Clay-based Geopolymers: A Comparative Study of Kaolinite-based and Halloysite-based Geopolymers

Published online by Cambridge University Press:  01 January 2024

Baifa Zhang*
Affiliation:
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
Ting Yu
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
Haozhe Guo
Affiliation:
Institute of Resource Comprehensive Utilization, Guangdong Academy of Sciences, Guangzhou 510650, China
Jiarong Chen
Affiliation:
CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
Yi Liu
Affiliation:
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
Peng Yuan
Affiliation:
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

As 1:1 dioctahedral clay minerals, kaolinite and halloysite have similar chemical compositions. However, halloysite often possesses a nanotubular structure and special surface reactivity compared to platy kaolinite. The objective of this current work was to determine the effect of the SiO2/Al2O3 ratio on the microstructure and properties of geopolymers derived from two kinds of kaolin: platy kaolinite and nanotubular halloysite. The chemical structures and compositions of the geopolymers obtained were characterized through X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR), whereas the microstructural analysis was performed by scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET) method, and N2 physisorption analysis. The results indicated that calcined halloysite showed greater geopolymerization reactivity than calcined kaolinite. In addition, the mechanical properties of the clay-based geopolymers depended not only on the SiO2/Al2O3 ratio but also on the morphology of the clay. Crystalline zeolite A and geopolymer were produced after alkali-activation of kaolin with a SiO2/Al2O3 ratio of 2.5; these products possessed porous and heterogeneous microstructures having poor compressive strength. As SiO2/Al2O3 ratios increased to >2.5, geopolymers with compact microstructure and high compressive strength were produced after alkali-activation of kaolin. Notably, at a given condition, halloysite-based geopolymers exhibited greater early compressive strength, more compactness, and more homogeneous microstructure than kaolinite-based geopolymers. This can be attributed to the nanotubular microstructure of halloysite, which can release more Si and Al during alkali activation than platy kaolinite. These results indicated that the various morphologies and microstructures among clays have significant impact on the microstructure and compressive strength of geopolymers.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Victoria Krupskaya.

References

Amran, Y. H. M., Alyousef, R., Alabduljabbar, H., & El-Zeadani, M. (2020). Clean production and properties of geopolymer concrete; A review. Journal of Cleaner Production, 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679CrossRefGoogle Scholar
Barrie, E., Cappuyns, V., Vassilieva, E., Adriaens, R., Hollanders, S., Garcés, D., Paredes, C., Pontikes, Y., Elsen, J., & Machiels, L. (2015). Potential of inorganic polymers (geopolymers) made of halloysite and volcanic glass for the immobilisation of tailings from gold extraction in Ecuador. Applied Clay Science, 109–110, 95106. https://doi.org/10.1016/j.clay.2015.02.025CrossRefGoogle Scholar
Bewa, C. N., Tchakouté, H. K., Banenzoué, C., Cakanou, L., Mbakop, T. T., Kamseu, E., & Rüscher, C. H. (2020). Acid-based geopolymers using waste fired brick and different metakaolins as raw materials. Applied Clay Science, 198, 105813. https://doi.org/10.1016/j.clay.2020.105813CrossRefGoogle Scholar
Blaise, N. B., Ndigui, B., Emmanuel, Y., Rodrigue, C. K., & Robert, N. (2019). Effect of limestone dosages on some properties of geopolymer from thermally activated halloysite. Construction and Building Materials, 217, 2835. https://doi.org/10.1016/j.conbuildmat.2019.05.058Google Scholar
Cai, J., Tan, J., & Li, X. (2020). Thermoelectric behaviors of fly ash and metakaolin based geopolymer. Construction and Building Materials, 237, 117757. https://doi.org/10.1016/j.conbuildmat.2019.117757CrossRefGoogle Scholar
Chen, K., Wu, D., Xia, L., Cai, Q., & Zhang, Z. (2021). Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement. Construction and Building Materials, 279, 122496. https://doi.org/10.1016/j.conbuildmat.2021.122496CrossRefGoogle Scholar
Davidovits, J. (2011) Geopolymer Chemistry and Applications. 3rd Edition, Institut Geopolymere, Saint-Quentin.Google Scholar
Deng, L., Yuan, P., Liu, D., Annabi-Bergaya, F., Zhou, J., Chen, F., & Liu, Z. (2017). Effects of microstructure of clay minerals, montmorillonite, kaolinite and halloysite, on their benzene adsorption behaviors. Applied Clay Science, 143, 184191. https://doi.org/10.1016/j.clay.2017.03.035CrossRefGoogle Scholar
Duxson, P., Mallicoat, S. W., Lukey, G. C., Kriven, W. M., & Deventer, J. S. J. (2007). The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 292, 820. https://doi.org/10.1016/j.colsurfa.2006.05.044CrossRefGoogle Scholar
Farhan, N. A., Sheikh, M. N., & Hadi, M. N. S. (2019). Investigation of engineering properties of normal and high strength fly ash based geopolymer and alkali-activated slag concrete compared to ordinary Portland cement concrete. Construction and Building Materials, 196, 2642. https://doi.org/10.1016/j.conbuildmat.2018.11.083CrossRefGoogle Scholar
Ferone, C., Liguori, B., Capasso, I., Colangelo, F., Cioffi, R., Cappelletto, E., & Di Maggio, R. (2015). Thermally treated clay sediments as geopolymer source material. Applied Clay Science, 107, 195204. https://doi.org/10.1016/j.clay.2015.01.027CrossRefGoogle Scholar
Haw, T. T., Hart, F., Rashidi, A., & Pasbakhsh, P. (2020). Sustainable cementitious composites reinforced with metakaolin and halloysite nanotubes for construction and building applications. Applied Clay Science, 188, 105533. https://doi.org/10.1016/j.clay.2020.105533CrossRefGoogle Scholar
He, J., Zhang, J., Yu, Y., & Zhang, G. (2012). The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: A comparative study. Construction and Building Materials, 30, 8091. https://doi.org/10.1016/j.conbuildmat.2011.12.011CrossRefGoogle Scholar
He, P., Wang, M., Shuai, F., Jia, D., Shu, Y., Yuan, J., Xu, J., Wang, P., & Yu, Z. (2016). Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceramics International, 42, 1441614422. https://doi.org/10.1016/j.ceramint.2016.06.033CrossRefGoogle Scholar
Heah, C. Y., Kamarudin, H., Al Bakri, A. M. M., Bnhussain, M., Luqman, M., Nizar, I. K., Ruzaidi, C. M., & Liew, Y. M. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 35, 912922. https://doi.org/10.1016/j.conbuildmat.2012.04.102CrossRefGoogle Scholar
Hollanders, S., Adriaens, R., Skibsted, J., Cizer, Ö., & Elsen, J. (2016). Pozzolanic reactivity of pure calcined clays. Applied Clay Science, 132–133, 552560. https://doi.org/10.1016/j.clay.2016.08.003CrossRefGoogle Scholar
Hounsi, A. D., & Lecomte, G. L. (2013). Kaolin-based geopolymers: Effect of mechanical activation and curing process. Construction and Building Materials, 42, 105113. https://doi.org/10.1016/j.conbuildmat.2012.12.069CrossRefGoogle Scholar
Hu, N., Bernsmeier, D., Grathof, G. H., & Warr, L. N. (2016). The influence of alkali activatortype, curing temperature and gibbsite on the geopolymerization of an interstratified illite-smectite rich clay from Friedland. Applied Clay Science, 135, 386393. https://doi.org/10.1016/j.clay.2016.10.021CrossRefGoogle Scholar
Izadifar, M., Thissen, P., Steudel, A., Kleeberg, R., Kaufhold, S., Kaltenbach, J., Schuhmann, R., Dehn, F., & Emmerich, K. (2020). Comprehensive examination of dehydroxylation of kaolinite, disordered kaolinite, and dickite: Experimental studies and density functional theory. Clays and Clay Minerals, 68, 319333. https://doi.org/10.1007/s42860-020-00082-wCrossRefGoogle Scholar
Joussein, E., Petit, S. G., Churchman, J., Theng, B. K. G., Righi, D., & Delvaux, B. (2005). Halloysite clay minerals - A review. Clay Minerals, 40, 383426. https://doi.org/10.1180/0009855054040180CrossRefGoogle Scholar
Kaze, C. R., Tchakoute, H. K., Mbakop, T. T., Mache, J. R., Kamseu, E., Melo, U. C., Leonelli, C., & Rahier, H. (2018). Synthesis and properties of inorganic polymers (geopolymers) derived from Cameroon-meta-halloysite. Ceramics International, 44, 1849918508. https://doi.org/10.1016/j.ceramint.2018.07.070CrossRefGoogle Scholar
Kaze, C. R., Alomayri, T., Hasan, A., Tome, S., Lecomte-Nana, G. L., Nemaleu, J. G. D., Tchakoute, H. K., Kamseu, E., Melo, U. C., & Rahier, H. (2020). Reaction kinetics and rheological behaviour of meta-halloysite based geopolymer cured at room temperature: Effect of thermal activation on physicochemical and microstructural properties. Applied Clay Science, 196, 105773. https://doi.org/10.1016/j.clay.2020.105773CrossRefGoogle Scholar
Kaze, C. R., Venyite, P., Nana, A., Deutou, J. G. N., Tchakoute, H. K., Rahier, H., Kamseu, E., Melo, U. C., & Leonelli, C. (2020). Meta-halloysite to improve compactness in ironrich laterite-based alkali activated materials. Materials Chemistry and Physics, 239, 122268. https://doi.org/10.1016/j.matchemphys.2019.122268CrossRefGoogle Scholar
Kaze, C. R., Adesina, A., Alomayri, T., Assaedi, H., Kamseu, E., Melo, U. C., Andreola, F., & Leonelli, C. (2021). Characterization, reactivity and rheological behaviour of metakaolin and Meta-halloysite based geopolymer binders. Cleaner Materials, 2, 100025. https://doi.org/10.1016/j.clema.2021.100025CrossRefGoogle Scholar
Kaze, C. R., Nana, A., Lecomte-Nana, G. L., Deutou, J. G. N., Kamseu, E., Melo, U. C., Andreola, F., & Leonelli, C. (2022). Thermal behaviour and microstructural evolution of metakaolin and meta-halloysite-based geopolymer binders: A comparative study. Journal of Thermal Analysis and Calorimetry, 147(3), 20552071. https://doi.org/10.1007/s10973-021-10555-2CrossRefGoogle Scholar
Khalifa, A. Z., Cizer, Ö., Pontikes, Y., Heath, A., Patureau, P., Bernal, S. A., & Marsh, A. T. M. (2020). Advances in alkali-activation of clay minerals. Cement and Concrete Research, 132, 106050. https://doi.org/10.1016/j.cemconres.2020.106050CrossRefGoogle Scholar
Li, Y., Chen, M., Song, H., Yuan, P., Liu, D., Zhang, B., & Bu, H. (2020). Methane hydrate formation in the stacking of kaolinite particles with different surface contacts as nanoreactors: A molecular dynamics simulation study. Applied Clay Science, 186, 105439. https://doi.org/10.1016/j.clay.2020.105439CrossRefGoogle Scholar
Liew, Y. M., Heah, C. Y., Al Bakri, M. M., & Hussin, K. (2016). Structure and properties of clay-based geopolymer cements: A review. Progress in Materials Science, 83, 595629. https://doi.org/10.1016/j.pmatsci.2016.08.002CrossRefGoogle Scholar
Liu, J., Zha, F., Xu, L., Kang, B., Yang, C., Zhang, W., Zhang, J., & Liu, Z. (2020). Zinc leachability in contaminated soil stabilized/solidified by cement-soda residue under freezethaw cycles. Applied Clay Science, 186, 105474. https://doi.org/10.1016/j.clay.2020.105474CrossRefGoogle Scholar
Liu, J., Doh, J., Dinh, H. L., Ong, D. E. L., Zi, G., & You, I. (2022). Effect of Si/Al molar ratio on the strength behavior of geopolymer derived from various industrial waste: A current state of the art review. Construction and Building Materials, 329, 127134. https://doi.org/10.1016/j.conbuildmat.2022.127134CrossRefGoogle Scholar
Lolli, F., Manzano, H., Provis, J. L., Bignozzi, M. C., & Masoero, E. (2018). Atomistic Simulations of Geopolymer Models: The Impact of Disorder on Structure and Mechanics. ACS Applied Materials & Interfaces, 10, 2280922820. https://doi.org/10.1021/acsami.8b03873CrossRefGoogle ScholarPubMed
Ma, Y., Hu, J., & Ye, G. (2013). The pore structure and permeability of alkali activated fly ash. Fuel, 104, 771780. https://doi.org/10.1016/j.fuel.2012.05.034CrossRefGoogle Scholar
Madejová, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: Infrared methods. Clays and Clay Minerals, 49, 372373. https://doi.org/10.1346/CCMN.2001.0490508CrossRefGoogle Scholar
Maia, A. Á. B., Angélica, R. S., de Freitas Neves, R., Pöllmann, H., Straub, C., & Saalwächter, K. (2014). Use of 29Si and 27Al MAS NMR to study thermal activation of kaolinites from Brazilian Amazon kaolin wastes. Applied Clay Science, 87, 189196. https://doi.org/10.1016/J.CLAY.2013.10.028CrossRefGoogle Scholar
Martina, M. C., Lorenzo, L., Giuseppe, C., Giuseppe, C., & Stefana, M. (2022). Halloysite based geopolymers filled with wax microparticles as sustainable building materials with enhanced thermo-mechanical performances. Journal of Environmental Chemical Engineering, 10, 108594. https://doi.org/10.1016/j.jece.2022.108594Google Scholar
Mbey, J. A., Thomas, F., Razafitianamaharavo, A., Caillet, C., & Villiéras, F. (2019). A comparative study of some kaolinites surface properties. Applied Clay Science, 172, 135145. https://doi.org/10.1016/j.clay.2019.03.005CrossRefGoogle Scholar
Medri, V., Fabbri, S., Dedecek, J., Sobalik, Z., Tvaruzkova, Z., & Vaccari, A. (2010). Role of the morphology and the dehydroxylation of metakaolins on geopolymerization. Applied Clay Science, 50, 538545. https://doi.org/10.1016/j.clay.2010.10.010CrossRefGoogle Scholar
Najafi, E. K., Chenari, R. J., & Arabani, M. (2020). The potential use of clay-fly ash geopolymer in the design of active-passive liners: A review. Clays and Clay Minerals, 68, 296308. https://doi.org/10.1007/s42860-020-00074-wCrossRefGoogle Scholar
Nana, A., Ngouné, J., Kaze, R. C., Boubakar, L., Tchounang, S. K., Tchakouté, H. K., Kamseu, E., & Leonelli, C. (2019). Room-temperature alkaline activation of feldspathic solid solutions: Development of high strength geopolymers. Construction and Building Materials, 195, 258268. https://doi.org/10.1016/j.conbuildmat.2018.11.068CrossRefGoogle Scholar
Navid, R., Carsten, K., Carsten, G., Paul, K., & Mehdi, M. (2023). Halloysite reinforced 3D-printable geopolymers. Cement and Concrete Composites, 136, 104894. https://doi.org/10.1016/j.cemconcomp.2022.104894Google Scholar
Nemaleu, J. G. D., Kaze, C. R., Tome, S., Alomayri, T., Assaedi, H., Kamseu, E., Melo, U. C., & Sglavo, V. M. (2021). Powdered banana peel in calcined halloysite replacement on the setting times and engineering properties on the geopolymer binders. Construction and Building Materials, 279, 122480. https://doi.org/10.1016/j.conbuildmat.2021.122480CrossRefGoogle Scholar
Nicolas, S. R., Cyr, M., & Escadeillas, G. (2013). Characteristics and applications of fash metakaolins. Applied Clay Science, 83–84, 253262. https://doi.org/10.1016/j.clay.2013.08.036CrossRefGoogle Scholar
Nkwaju, R. Y., Djobo, J. N. Y., Nouping, J. N. F., Huisken, P. W. M., Deutou, J. G. N., & Courard, L. (2019). Ironrich laterite-bagasse fibers based geopolymer composite: Mechanical, durability and insulating properties. Applied Clay Science, 183, 105333. https://doi.org/10.1016/j.clay.2019.105333CrossRefGoogle Scholar
Okada, K., Ōtsuka, N., & Ossaka, J. (1986). Characterization of Spinel Phase Formed in the Kaolin-Mullite Thermal Sequence. Journal of the American Ceramic Society, 69, C-251–C-253. https://doi.org/10.1111/j.1151-2916.1986.tb07353.xCrossRefGoogle Scholar
Parker, T. W. (1969). A Classification of Kaolinites by Infrared Spectroscopy. Clay Minerals, 8, 135141. https://doi.org/10.1180/claymin.1969.008.2.02CrossRefGoogle Scholar
Prasad, M. S., Reid, K. J., & Murray, H. H. (1991). Kaolin: Processing, properties and applications. Applied Clay Science, 6, 87119. https://doi.org/10.1016/0169-1317(91)90001-PCrossRefGoogle Scholar
Provis, J. L., Lukey, G. C., & Deventer, J. S. J. (2005). Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chemistry of Materials, 17, 30753085. https://doi.org/10.1021/cm050230iCrossRefGoogle Scholar
Qian, W., Feng, R., Song, S., García, R. E., Estrella, R. M., Patiño, C. L., & Zhang, Y. (2017). Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cement and Concrete Composites, 79, 4552. https://doi.org/10.1016/j.cemconcomp.2017.01.014Google Scholar
Rees, C. A., Provis, J. L., Lukey, G. C., & Deventer, J. S. J. (2007). Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir, 23, 81708179. https://doi.org/10.1021/la700713gCrossRefGoogle ScholarPubMed
Shekhovtsova, J., Zhernovsky, I., Kovtun, M., Kozhukhova, N., Zhernovskaya, I., & Kearsley, E. (2018). Estimation of fly ash reactivity for use in alkali-activated cements - A step towards sustainable building material and waste utilization. Journal of Cleaner Production, 178, 2233. https://doi.org/10.1016/j.jclepro.2017.12.270CrossRefGoogle Scholar
Singh, B. (1996). Why does halloysite roll? - A new model. Clays and Clay Minerals, 44(2), 191196. https://doi.org/10.1346/CCMN.1996.0440204CrossRefGoogle Scholar
Singh, P. S., Trigg, M., Burgar, I., & Bastow, T. (2005). Geopolymer formation processes at room temperature studied by 29Si and 27Al MAS-NMR. Materials Science and Engineering: A, 396, 392402. https://doi.org/10.1016/j.msea.2005.02.002CrossRefGoogle Scholar
Skibsted, J., & Andersen, M. D. (2013). The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C–S–H) phase resulting from Portland cement hydration studied by 29Si MAS NMR. Journal of the American Ceramic Society, 96, 651656. https://doi.org/10.1111/jace.12024CrossRefGoogle Scholar
Smith, M. E., Neal, G., Trigg, M. B., & Drennan, J. (1993). Structural characterization of the thermal transformation of halloysite by solid state NMR. Applied Magnetic Resonance, 4, 157170. https://doi.org/10.1007/BF03162561CrossRefGoogle Scholar
Sonuparlak, B., Sarikaya, M., & Aksay, I. A. (2005). Spinel phase formation during the 980°C exothermic reaction in the kaolinite-to-mullite reaction series. Journal of the American Ceramic Society, 70, 837842. https://doi.org/10.1111/j.1151-2916.1987.tb05637.xCrossRefGoogle Scholar
Sun, Z., & Vollpracht, A. (2017). Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cement and Concrete Research, 103, 110122. https://doi.org/10.1016/j.cemconres.2017.10.004CrossRefGoogle Scholar
Tan, D., Yuan, P., Annabi-Bergaya, F., Dong, F., Liu, D., & He, H. (2015). A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Applied Clay Science, 114, 190196. https://doi.org/10.1016/j.clay.2015.05.024CrossRefGoogle Scholar
Tchakouté, H. K., Melele, S. J. K., Djamen, A. T., Kaze, C. R., Kamseu, E., Nanseu, C. N. P., Leonelli, C., & Rüscher, C. H. (2020). Microstructural and mechanical properties of poly(sialate-siloxo) networks obtained using metakaolins from kaolin and halloysite as aluminosilicate sources: A comparative study. Applied Clay Science, 186, 105448. https://doi.org/10.1016/j.clay.2020.105448CrossRefGoogle Scholar
Tian, Q., Chen, C., Wang, M., Guo, B., Zhang, H., & Sasaki, K. (2021). Effect of Si/Al molar ratio on the immobilization of selenium and arsenic oxyanions in geopolymer. Environmental Pollution, 274, 116509. https://doi.org/10.1016/j.envpol.2021.116509CrossRefGoogle ScholarPubMed
Tognonvi, T. M., Petlitckaia, S., Gharzouni, A., Fricheteau, M., Texier-Mandoki, N., Bourbon, X., & Rossignol, S. (2020). High-temperature, resistant, argillite-based, alkali-activated materials with improved post-thermal treatment mechanical strength. Clays and Clay Minerals, 68, 211219. https://doi.org/10.1007/s42860-020-00067-9CrossRefGoogle Scholar
Valentini, L. (2018). Modeling Dissolution-Precipitation Kinetics of Alkali-Activated Metakaolin. ACS Omega, 3, 1810018108. https://doi.org/10.1021/acsomega.8b02380CrossRefGoogle ScholarPubMed
Walkley, B., & Provis, J. (2019). Solid-state nuclear magnetic resonance spectroscopy of cements. Materials Today Advances, 1, 100007. https://doi.org/10.1016/j.mtadv.2019.100007CrossRefGoogle Scholar
Wang, Y. H., Chen, J. Y., Wu, H. D., & Lei, X. R. (2017). Controllable Preparation of Zeolite P1 From Metakaolin-Based Geopolymers via a Hydrothermal Method. Clays and Clay Minerals, 65, 4251. https://doi.org/10.1346/CCMN.2016.064048CrossRefGoogle Scholar
Wang, R., Wang, J., Dong, T., & Ouyang, G. (2020). Structural and mechanical properties of geopolymers made of aluminosilicate powder with different SiO2/Al2O3 ratio: Molecular dynamics simulation and microstructural experimental study. Construction and Building Materials, 240, 117935. https://doi.org/10.1016/j.conbuildmat.2019.117935CrossRefGoogle Scholar
Wang, Q., Guo, H., Yu, T., Yuan, P., Deng, L., & Zhang, B. (2022). Utilization of calcium carbide residue as solid alkali for preparing fly ash-based geopolymers: Dependence of compressive strength and microstructure on calcium carbide residue, water content and curing temperature. Materials, 15, 973. https://doi.org/10.3390/ma15030973CrossRefGoogle ScholarPubMed
Werling, N., Kaltenbach, J., Weidler, P. G., Schuhmann, R., Dehn, F., & Emmerich, K. (2022). Solubility of calcined kaolinite, montmorillonite, and illite in high molar NaOH and suitability as precursors for geopolymers. Clays and Clay Minerals, 70, 270289. https://doi.org/10.1007/s42860-022-00185-6CrossRefGoogle Scholar
White, R. D., Bavykin, D. V., & Walsh, F. C. (2012). The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions. Nanotechnology, 23, 065705. https://doi.org/10.1088/0957-4484/23/6/065705CrossRefGoogle ScholarPubMed
Yuan, P., Southon, P. D., Liu, Z. W., Green, M. E. R., Hook, J. M., Antill, S. J., & Kepert, C. J. (2008). Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. Journal of Physical Chemistry C, 112, 1574215751. https://doi.org/10.1021/JP805657TCrossRefGoogle Scholar
Yuan, P., Tan, D., Aannabi-Bergaya, F., Yan, W., Fan, M., Liu, D., & He, H. (2012). Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays and Clay Minerals, 60, 561573. https://doi.org/10.1346/CCMN.2012.0600602CrossRefGoogle Scholar
Yuan, P., Tan, D., & Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: Recent research advances and future prospects. Applied Clay Science, 112–113, 7593. https://doi.org/10.1016/j.clay.2015.05.001CrossRefGoogle Scholar
Yuan, J. K., He, P. G., Jia, D. C., Yang, C., Zhang, Y., Yan, S., Yang, Z. H., Duan, X. M., Wang, S. J., & Zhou, Y. (2016). Effect of curing temperature and SiO2/K2O molar ratio on the performance of metakaolin-based geopolymers. Ceramics International, 42, 1618416190. https://doi.org/10.1016/j.ceramint.2016.07.139CrossRefGoogle Scholar
Yuan, P., (2016). Chapter 7 - Thermal-Treatment-Induced Deformations and Modifications of Halloysite, in: Yuan, P., Thill, A., Bergaya, F. (Eds.), Developments in Clay Science, 7, 137166. https://doi.org/10.1016/B978-0-08-100293-3.00007-8.CrossRefGoogle Scholar
Zhang, Z. H., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 43, 218223. https://doi.org/10.1016/j.clay.2008.09.003Google Scholar
Zhang, Z., Wang, H., Yao, X., & Zhu, Y. (2012a). Effects of halloysite in kaolin on the formation and properties of geopolymers. Cement and Concrete Composites, 34, 709715. https://doi.org/10.1016/j.cemconcomp.2012.02.003CrossRefGoogle Scholar
Zhang, Z. H., Wang, H., Provis, J. L., Bullen, F., Reid, A., & Zhu, Y. C. (2012b). Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochimica Acta, 539, 2333. https://doi.org/10.1016/j.tca.2012.03.021CrossRefGoogle Scholar
Zhang, Z. H., Provis, J. L., Wang, H., Bullen, F., & Reid, A. (2013). Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochimica Acta, 565, 163171. https://doi.org/10.1016/j.tca.2013.01.040CrossRefGoogle Scholar
Zhang, Z. H., Zhu, H. J., Zhou, C. H., & Wang, H. (2016). Geopolymer from kaolin in China: An overview. Applied Clay Science, 119, 3141. https://doi.org/10.1016/j.clay.2015.04.023CrossRefGoogle Scholar
Zhang, B., Guo, H., Deng, L., Fan, W., Yu, T., & Wang, Q. (2020a). Undehydrated kaolinite as materials for the preparation of geopolymer through phosphoric acid-activation. Applied Clay Science, 199, 105887. https://doi.org/10.1016/j.clay.2020.105887CrossRefGoogle Scholar
Zhang, B., Guo, H., Yuan, P., Li, Y., Wang, Q., Deng, L., & Liu, D. (2020b). Geopolymerization of halloysite via alkali-activation: Dependence of microstructures on precalcination. Applied Clay Science, 185, 105375. https://doi.org/10.1016/j.clay.2019.105375CrossRefGoogle Scholar
Zhang, B., Guo, H., Yuan, P., Deng, L., & Liu, D. (2020c). Novel acid-based geopolymer synthesized from nanosized tubular halloysite: The role of precalcination temperature and phosphoric acid concentration. Cement and Concrete Composites, 110, 103601. https://doi.org/10.1016/j.cemconcomp.2020.103601CrossRefGoogle Scholar
Zhang, B., Yuan, P., Guo, H., Deng, L., Li, Y., Li, L., Wang, Q., & Liu, D. (2021). Effect of curing conditions on the microstructure and mechanical performance of geopolymers derived from nanosized tubular halloysite. Construction and Building Materials, 268, 121186. https://doi.org/10.1016/j.conbuildmat.2020.121186CrossRefGoogle Scholar
Zhang, B., Yu, T., Deng, L., Li, Y., Guo, H., Zhou, J., Li, L., & Yuan, P. (2022). Ion-adsorption type rare earth tailings for preparation of alkali-based geopolymer with capacity for heavy metals immobilization. Cement and Concrete Composites, 134, 104768. https://doi.org/10.1016/j.cemconcomp.2022.104768CrossRefGoogle Scholar