We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Thin hole transport layers are important elements in organic semiconductor-based devices. Metal oxides are an encouraging material class for this purpose, as they may provide sufficient hole conduction in combination with excellent electron blocking properties. Both, long-term device stability, which may often be limited by the thermal stability of interfaces, and higher temperature processing steps, benefit strongly from the existence of thermally stable metal oxide interlayers. Provided that thermally stable electrodes can be fashioned, the stability of organic active layers—for example, in organic field effect transistors, light emitting diodes, or photovoltaic (OPV) devices can be investigated. Here, we apply this concept and report about the study of hole mobility (µh) in single-carrier-hole-only devices in dependence of thermal annealing up to the above the actual melting temperature of regio-regular poly(3-hexylthiophene-2,5-diyl) (P3HT).
Five of the 13 known species of Mammomonogamus have been described in members of the family Felidae, including domestic cats, making felids the most frequent hosts of Mammomonogamus. The occurrence of Mammomonogamus in felids is geographically scattered and information on the life cycle and other aspects of infections is lacking. The paucity of data opens the questions on possible conspecificity of some of the described species of Mammomonogamus and on the existence of possible reservoirs for infections in domestic cats in geographically isolated endemic foci of infection. To test such hypotheses, we compared sequences of mitochondrial and nuclear markers obtained from Mammomonogamus adults or eggs collected from domestic cats in three geographically distant localities. Based on morphology, geographic origin and site of infection, the worms examined can be referred to as Mammomonogamus ierei and Mammomonogamus auris. Phylogenetic analyses of both mitochondrial and ribosomal DNA markers showed monophyly of the genus Mammomonogamus and suggested the existence of at least two species in cats. Review of the literature, the existence of several species and the discontinuous geographic distribution of Mammomonogamus infections in domestic cats suggest an historical spillover of infection from wild reservoirs, presumably wild felids.
Primitive meteorites contain small amounts of presolar minerals that formed in the winds of evolved stars or in the ejecta of stellar explosions. Silicon carbide is the best studied presolar mineral. Based on its isotopic compositions it was divided into distinct populations that have different origins: Most abundant are the mainstream grains which are believed to come from 1.5–3 M⊙ AGB stars of roughly solar metallicity. The rare Y and Z grains are likely to come from 1.5–3 M⊙ AGB stars as well, but with subsolar metallicities (0.3–0.5 times solar). Here we report on C and Si isotope and trace element (Zr, Ba) studies of individual, submicrometer-sized SiC grains. The most striking results are: (1) Zr and Ba concentrations are higher in Y and Z grains than in mainstream grains, with enrichments relative to Si and solar of up to 70 times (Zr) and 170 times (Ba), respectively; (2) For the Y and Z grains there is a positive correlation between Ba concentrations and amount of s-process Si. This correlation is well explained by predictions for 2–3 M⊙ AGB stars with metallicities of 0.3–0.5 times solar. This confirms low-metallicity stars as most likely stellar sources for the Y and Z grains.
Secondary ion mass spectrometry (SIMS) is a widely used analytical technique in fields such as microelectronics, metallurgy, biology, geochemistry, and cosmochemistry. Major SIMS applications in cosmochemistry are measurements of the isotopic compositions of the light-to intermediate-mass elements and of minor and trace element abundances of nanometer-to micrometer-sized samples. In the context of this book, the major application of SIMS is the study of presolar dust and organics found in primitive Solar System materials. The basic principle of SIMS can be described as follows: the sample of interest is bombarded with primary ions (several keV energy), mostly oxygen or cesium. This triggers a collisional cascade in the target and secondary particles (atomic and molecular ions, neutrals) are emitted from the uppermost layers. The information depth, i.e. from where the secondary particles originate, is typically 5–20nm and depends on parameters such as primary particle energy, angle of incidence, and target composition. Typically, some permil or percent of the sputtered particles are ionized and can be analyzed in a mass spectrometer.
Secondary ion mass spectrometry is a powerful technique, which has several advantages: detection limits are ppm for most elements and ppb for favorable elements, all elements (except the noble gases) are detectable, isotopes can be distinguished, and a high lateral resolution, ranging from ≈50 nm to several μm, depending on the type of instrument and application (see below), can be achieved. Disadvantages of SIMS are its destructive nature and the fact that secondary ion yields vary by more than six orders of magnitude which makes isotope studies of certain elements very difficult or impossible.
Abstract Dust is an important constituent in the Universe. About 1% of the mass of the interstellar matter is in dust. This dust is either stardust that condensed in the winds of evolved stars and in the ejecta of supernova and nova explosions or dust that formed in dense interstellar clouds. Here, we will discuss the cycle of matter from stars to the interstellar medium and how interstellar clouds evolve to protostars and protostellar disks. We will discuss the nature and origin of interstellar dust and how it entered the Solar System. A small fraction of the stardust grains survived the earliest stages of Solar System formation and can be recognized by highly anomalous isotopic compositions as presolar grains in meteorites, interplanetary dust particles, and cometary matter, with concentrations at the subpermil level. Imprints of likely interstellar chemistry are seen as D and 15N enrichments in organic matter in primitive Solar System materials.
Dust is an important constituent in the Universe and its meaning for astrophysics is manifold. In the interstellar medium (ISM) about 1% of the mass is in dust. A major fraction of the refractory elements in the ISM is locked up in dust leading to a depletion of these elements in the gas phase. Dust is responsible for interstellar extinction (absorption and scattering of light). It was this feature that led to the first firm identification of dust in the ISM in the twentieth century. Detailed studies of interstellar extinction imply the presence of solid particles with sizes of the wavelength of visible light, i.e. in the submicrometer range.
To describe a pseudo-outbreak of Clostridium difficile infection (CDI) caused by a faulty toxin assay lot and to determine the effect of sensitivity, specificity, and repeated testing for C. difficile on perceived CDI burden, positive predictive value, and false-positive results.
Design.
Outbreak investigation and criterion standard.
Patients.
Patients hospitalized at a tertiary care hospital who had at least 1 toxin assay for detection of C. difficile performed during the period from July 1, 2004, through June 30, 2006.
Methods.
The run control chart method and the x2 test were used to compare CDI rates and the proportion of positive test results before, during, and after the pseudo-outbreak. The effect of repeated testing was evaluated by using 3 hypothetical models with a sample of 10,000 patients and various assay sensitivity and specificity estimates.
Results.
In November of 2005, the CDI rate at the hospital increased from 1.5 to 2.6 cases per 1,000 patient-days (P< .01), and the proportion of positive test results increased from 13.6% to 22.1% (P< .01). An investigation revealed a pseudo-outbreak caused by a faulty toxin assay lot. A decrease of only 1.2% in the specificity of the toxin assay would result in a 32% increase in perceived incidence of CDI at this institution. When calculated by use of the manufacturer's stated specificity and sensitivity and this institution's testing practices, the positive predictive value of the test decreased from 80.6% to 4.1% for patients who received 3 tests.
Conclusion.
Specificity is as important as sensitivity when testing for CDI. False-positive CDI cases can drain hospital resources and adversely affect patients. Repeated testing for C. difficile should be performed with caution.
The recessive mutant gene downless (dl) causes abnormal texture of the coat and absence of hair on the tail. The dl locus had previously been shown to act in the epidermis and not in the dermis. To obtain evidence on the pattern of proliferation of epidermis, downless ↔ normal chimaeras were produced by embryo aggregation, and the pattern of normal and mutant hair in the coat was examined. The chimaeras showed a pattern of narrow transverse stripes of normal and abnormal hair. This pattern was similar to that found in mice chimaeric for alleles at the agouti locus known to act in the dermis. This evidence supports the conclusion that the pattern of cell proliferation is similar in dermis and epidermis, and is compatible with the hypothesis that both tissues proliferate by lateral coherent clonal growth from a randomly mixed array of longitudinally arranged cells.
Small amounts of pre-solar grains have survived in the matrices of primitive meteorites and interplanetary dust particles. Their detailed study in the laboratory with modern analytical tools provides highly accurate and detailed information with regard to stellar nucleosynthesis and evolution, grain formation in stellar atmospheres, and Galactic Chemical Evolution. Their survival puts constraints on conditions they were exposed to in the interstellar medium and in the Early Solar System.
We prepared a carbon nitride compound by treating the molecular precursor C2N4H4 in a laser-heated diamond-anvil-cell (LH-DAC) at pressures exceeding 27 GPa and temperatures above 1700°C. After quenching we recovered single crystals of the new material with diameters of about 1 μm. Using several experimental characterization techniques in conjunction with computational methods we determined composition, hybridization of constituting atoms, and the crystal structure. The new carbon nitride imide, C2N2(NH), adopts a defect-wurtzite structure and is isotypic to Si2N2(NH).
Occulting focal plane masks for the Terrestrial Planet Finder Coronagraph (TPF-C) could be designed with continuous gray scale profile of the occulting pattern such as $1-{\rm sinc}^2$ on a suitable material or with micron-scale binary transparent and opaque structures of metallic pattern on glass. We have designed, fabricated and tested both kinds of masks. The fundamental characteristics of such masks and initial test results from the High Contrast Imaging Test bed (HCIT) at JPL are presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.