Hostname: page-component-5d59c44645-n6p7q Total loading time: 0 Render date: 2024-03-03T23:34:48.728Z Has data issue: false hasContentIssue false

Heavy Element Abundances in Presolar Silicon Carbide Grains from Low-Metallicity AGB Stars

Published online by Cambridge University Press:  05 March 2013

Peter Hoppe*
Affiliation:
Max Planck Institute for Chemistry, P.O. Box 3060, D–55020 Mainz, Germany
Jan Leitner
Affiliation:
Max Planck Institute for Chemistry, P.O. Box 3060, D–55020 Mainz, Germany
Christian Vollmer
Affiliation:
Max Planck Institute for Chemistry, P.O. Box 3060, D–55020 Mainz, Germany
Elmar Gröner
Affiliation:
Max Planck Institute for Chemistry, P.O. Box 3060, D–55020 Mainz, Germany
Philipp R. Heck
Affiliation:
Max Planck Institute for Chemistry, P.O. Box 3060, D–55020 Mainz, Germany Chicago Center for Cosmochemistry, Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
Roberto Gallino
Affiliation:
Dipartimento di Fisica Generale, Universitá di Torino, 10125 Torino, Italy
Sachiko Amari
Affiliation:
Washington University, Laboratory for Space Sciences & the Physics Department, St. Louis, MO 63130, USA
*
ECorresponding author. Email: hoppe@mpch-mainz.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Primitive meteorites contain small amounts of presolar minerals that formed in the winds of evolved stars or in the ejecta of stellar explosions. Silicon carbide is the best studied presolar mineral. Based on its isotopic compositions it was divided into distinct populations that have different origins: Most abundant are the mainstream grains which are believed to come from 1.5–3 M AGB stars of roughly solar metallicity. The rare Y and Z grains are likely to come from 1.5–3 M AGB stars as well, but with subsolar metallicities (0.3–0.5 times solar). Here we report on C and Si isotope and trace element (Zr, Ba) studies of individual, submicrometer-sized SiC grains. The most striking results are: (1) Zr and Ba concentrations are higher in Y and Z grains than in mainstream grains, with enrichments relative to Si and solar of up to 70 times (Zr) and 170 times (Ba), respectively; (2) For the Y and Z grains there is a positive correlation between Ba concentrations and amount of s-process Si. This correlation is well explained by predictions for 2–3 M AGB stars with metallicities of 0.3–0.5 times solar. This confirms low-metallicity stars as most likely stellar sources for the Y and Z grains.

Type
Grains
Copyright
Copyright © Astronomical Society of Australia 2009

References

Amari, S., Lewis, R. S. & Anders, E., 1994, GeCoA, 58, 459 CrossRefGoogle Scholar
Amari, S., Zinner, E. & Lewis, R. S., 2000, M&PS, 35, 997 Google Scholar
Amari, S., Nittler, L. R., Zinner, E., Gallino, R., Lugaro, M. & Lewis, R. S., 2001, ApJ, 546, 248 Google Scholar
Bernatowicz, T., Amari, S., Zinner, E. & Lewis, R. S., 1991, ApJ, 373, L73 Google Scholar
Busso, M., Gallino, R. & Wasserburg, G. J., 1999, ARA&A, 37, 239 Google Scholar
Croat, T. K., Stadermann, F. J. & Bernatowicz, T. J., 2009, M&PS, 43, 1497 Google Scholar
Gail, H.-P., Zhukovska, S. V., Hoppe, P. & Trieloff, M., 2009, ApJ, in pressGoogle Scholar
Gallino, R., Arlandini, C., Busso, M., Lugaro, M., Travaglio, C., Straniero, O., Chieffi, A. & Limongi, M., 1998, ApJ, 497, 388 Google Scholar
Gröner, E. & Hoppe, P., 2006, Appl. Surf. Sci., 252, 7148 Google Scholar
Guber, K. H., Koehler, P. E., Derrien, H., Valentine, T. E., Leal, L. C., Sayer, R. O. & Rauscher, T., 2003, PhRvC, 67, 062802Google Scholar
Hoppe, P., 2008, SSRv, 138, 43 Google Scholar
Hoppe, P. & Ott, U., 1997, in Astrophysical Implications of the Laboratory Study of Presolar Materials, Eds. Bernatowicz, T. J. & Zinner, E. (NewYork: AIP), 27 Google Scholar
Hoppe, P., Amari, S., Zinner, E., Ireland, T. & Lewis, R. S., 1994, ApJ, 430, 870 Google Scholar
Hoppe, P. et al., 1997, ApJ, 487, L101 CrossRefGoogle Scholar
Hoppe, P., Leitner, J., Meyer, B. S., The, L.-S., Lugaro, M. & Amari, S., 2009, ApJ 691, L20 Google Scholar
Lodders, K. & Fegley, B. Jr., 1995, Meteoritics, 30, 661 Google Scholar
Lodders, K. & Fegley, B. Jr., 1997, ApJ 484, L71 CrossRefGoogle Scholar
Lodders, K. & Amari, S., 2005, ChEG, 65, 93 Google Scholar
Lugaro, M., Davis, A. M., Gallino, R., Pellin, M. J., Straniero, O. & Käppeler, F., 2003, ApJ, 593, 486 Google Scholar
Nittler, L. R. & Alexander, C. M. O. D., 2003, GeCoA, 67, 4961 CrossRefGoogle Scholar
Nollett, K. M., Busso, M. & Wasserburg, G. J., 2003, ApJ, 582, 1036 Google Scholar
Straniero, O., Chieffi, A., Limongi, M., Busso, M., Gallino, R. & Arlandini, C., 1997, ApJ, 478, 332 CrossRefGoogle Scholar
Stroud, R. M. & Bernatowicz, T. J., 2005, LPSC, 36, abstract #2010Google Scholar
Verchovsky, A. B., Wright, I. P. & Pillinger, C. T., 2004, ApJ, 607, 611 Google Scholar
Wasserburg, G. J., Boothroyd, A. I. & Sackmann, I.-J., 1995, ApJ, 447, L37 Google Scholar
Zinner, E., 2007, in Meteorites, Comets, and Planets, Ed. Davis, A. M. (Amsterdam: Elsevier), 1 Google Scholar
Zinner, E., Nittler, L. R., Gallino, R., Karakas, A. I., Lugaro, M., Straniero, O. & Lattanzio, J. C., 2006, ApJ, 650, 350 Google Scholar
Zinner, E. et al., 2007, GeCoA, 71, 4786 Google Scholar