We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the December 2021 issue of Cardiology in the Young, Hubrechts and colleagues, from Brussels and Leuven in Belgium, describe their experience in which the pulmonary veins were normally connected to the morphologically left atrium. By virtue of the presence of a shelf dividing the morphologically left atrium, however, the venous return was to the morphologically right atrium, with no evidence of formation of the superior interatrial fold, meaning that there was no obstruction of flow into the systemic venous circulation. The question posed by the Belgian authors is whether the shelf dividing the morphologically left atrium is a deviated primary atrial septum, as the arrangement has previously been interpreted. As they discuss, it is currently impossible to arbitrate this conundrum. In our commentary, we discuss the background to the dilemma. We point out that, as yet, it is not possible to code accurately this congenital cardiac malformation within The International Paediatric and Congenital Cardiac Code (IPCCC), nor within the newly produced 11th Revision of the International Classification of Diseases (ICD-11).
OBJECTIVES/GOALS: Evaluate the migration and immune suppressive functions of CCR2+/CX3CR1+ myeloid-derived suppressor cells (MDSCs). Integrate experimental data and biologically relevant mathematical models of infiltrating MDSCs in the context of glioblastoma (GBM). METHODS/STUDY POPULATION: CCR2+/CX3CR1+ cells were enriched from bone marrow obtained from CCR2(+/RFP)/CX3CR1(+/GFP) glioma-bearing mice to evaluate their immune-suppressive phenotype and ability to migrate to CCL2 and CCL7. Fluorescent imaging and quantification were performed on a range of tumor sizes to acquire vasculature, tumor, T cell, and MDSC densities. A system of ordinary differential equations was constructed to represent the temporal dynamics of glioma cells, T cells, and MDSCs within the tumor microenvironment. The Approximate Bayesian Computation method was used to determine probability distributions of important parameters, such as the suppression rate of T cells by MDSCs. RESULTS/ANTICIPATED RESULTS: CCR2+/CX3CR1+ M-MDSCs isolated from the bone marrow of tumor-bearing mice suppress CD8+ T cell proliferation and IFNγ production. CCR2+/CX3CR1+ cells migrate to recombinant and KR158B glioma sourced CCL2 and CCL7. Parameter values determined by the Approximate Bayesian Computation method agreed with parameter values from experimental data. This result further validated the structure and results of the mathematical model when performing computer simulations; thus, we can predict CCR2+/CX3CR1+ M-MDSC infiltration over time. DISCUSSION/SIGNIFICANCE: The immune-suppressive microenvironment in GBM contributes to poor outcomes despite standard of care. This study integrates biological and mathematical models to better understand infiltrating immune-suppressive cells, namely CCR2+/CX3CR1+ M-MDSCs. Future directions include modeling immunotherapies.
We honour a great man and a true giant. Lodewyk H.S. van Mierop (March 31, 1927 – October 17, 2021), known as Bob, was not only a Paediatric Cardiologist but also a dedicated Scientist. He made many significant and ground-breaking contributions to the fields of cardiac anatomy and embryology. He was devoted as a teacher, spending many hours with medical students, Residents, and Fellows, all of whom appreciated his regularly scheduled educational sessions. Those of us who were fortunate to know and spend time with him will always remember his great mind, his willingness to share his knowledge, and his ability to encourage spirited and fruitful discussions. His life was most productive, and he will long be remembered by many through his awesome and exemplary scientific contributions.
His legacy continues to influence the current and future generations of surgeons and all providers of paediatric and congenital cardiac care through the invaluable archive he established at University of Florida in Gainesville: The University of Florida van Mierop Heart Archive. Undoubtedly, with these extraordinary contributions to the fields of cardiac anatomy and embryology, which were way ahead of his time, Professor van Mierop was a true giant in Paediatric Cardiology. The invaluable archive he established at University of Florida in Gainesville, The University of Florida van Mierop Heart Archive, has been instrumental in teaching medical students, Residents, Medical Fellows, and Surgical Fellows. Only a handful of similar archives exist across the globe, and these archives are the true legacy of giants such as Dr. van Mierop. We have an important obligation to leave no stone unturned to continue to preserve these archives for the future generations of surgeons, physicians, all providers of paediatric and congenital cardiac care, and, most importantly, our patients.
Monoclonal antibody therapeutics to treat coronavirus disease (COVID-19) have been authorized by the US Food and Drug Administration under Emergency Use Authorization (EUA). Many barriers exist when deploying a novel therapeutic during an ongoing pandemic, and it is critical to assess the needs of incorporating monoclonal antibody infusions into pandemic response activities. We examined the monoclonal antibody infusion site process during the COVID-19 pandemic and conducted a descriptive analysis using data from 3 sites at medical centers in the United States supported by the National Disaster Medical System. Monoclonal antibody implementation success factors included engagement with local medical providers, therapy batch preparation, placing the infusion center in proximity to emergency services, and creating procedures resilient to EUA changes. Infusion process challenges included confirming patient severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positivity, strained staff, scheduling, and pharmacy coordination. Infusion sites are effective when integrated into pre-existing pandemic response ecosystems and can be implemented with limited staff and physical resources.
To describe the cumulative seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies during the coronavirus disease 2019 (COVID-19) pandemic among employees of a large pediatric healthcare system.
Design, setting, and participants:
Prospective observational cohort study open to adult employees at the Children’s Hospital of Philadelphia, conducted April 20–December 17, 2020.
Methods:
Employees were recruited starting with high-risk exposure groups, utilizing e-mails, flyers, and announcements at virtual town hall meetings. At baseline, 1 month, 2 months, and 6 months, participants reported occupational and community exposures and gave a blood sample for SARS-CoV-2 antibody measurement by enzyme-linked immunosorbent assays (ELISAs). A post hoc Cox proportional hazards regression model was performed to identify factors associated with increased risk for seropositivity.
Results:
In total, 1,740 employees were enrolled. At 6 months, the cumulative seroprevalence was 5.3%, which was below estimated community point seroprevalence. Seroprevalence was 5.8% among employees who provided direct care and was 3.4% among employees who did not perform direct patient care. Most participants who were seropositive at baseline remained positive at follow-up assessments. In a post hoc analysis, direct patient care (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.03–3.68), Black race (HR, 2.70; 95% CI, 1.24–5.87), and exposure to a confirmed case in a nonhealthcare setting (HR, 4.32; 95% CI, 2.71–6.88) were associated with statistically significant increased risk for seropositivity.
Conclusions:
Employee SARS-CoV-2 seroprevalence rates remained below the point-prevalence rates of the surrounding community. Provision of direct patient care, Black race, and exposure to a confirmed case in a nonhealthcare setting conferred increased risk. These data can inform occupational protection measures to maximize protection of employees within the workplace during future COVID-19 waves or other epidemics.
We identified quality indicators (QIs) for care during transitions of older persons (≥ 65 years of age). Through systematic literature review, we catalogued QIs related to older persons’ transitions in care among continuing care settings and between continuing care and acute care settings and back. Through two Delphi survey rounds, experts ranked relevance, feasibility, and scientific soundness of QIs. A steering committee reviewed QIs for their feasible capture in Canadian administrative databases. Our search yielded 326 QIs from 53 sources. A final set of 38 feasible indicators to measure in current practice was included. The highest proportions of indicators were for the emergency department (47%) and the Institute of Medicine (IOM) quality domain of effectiveness (39.5%). Most feasible indicators were outcome indicators. Our work highlights a lack of standardized transition QI development in practice, and the limitations of current free-text documentation systems in capturing relevant and consistent data.
ABSTRACT IMPACT: Predicting therapeutic responses in GBM. OBJECTIVES/GOALS: The goal of this team approach is to integrate mathematical models of glioblastoma (GBM) infiltrating myeloid cells that contribute to the immunosuppressive phenotype in glioma with experimental data to predict therapeutic responses to combined chemokine receptor and immune checkpoint blockade. METHODS/STUDY POPULATION: Orthotopic murine KR158-luc gliomas were established in fluorescent reporter CCR2WT/RFP CX3CR1WT/GFP mice. Subsequently, an anti-CD31 injection was administered to label the vasculature. Fluorescent imaging and quantification of anti-CD3 stained sections were performed on a range of tumor sizes to acquire vasculature, tumor, T cell, and myeloid cell densities. In parallel, a system of ordinary differential equations was formulated based on biological assumptions to evaluate the change over time of tumor cells, T cells, and infiltrating myeloid cells. The model was then refined and validated by experimental results. RESULTS/ANTICIPATED RESULTS: Fluorescent imaging and quantification revealed a correlation between tumor size and abundance of (CX3CR1+, CCR2-) and (CX3CR1+, CCR2+) myeloid cell populations in the tumor microenvironment. The density of these cell populations and vasculature remained constant as the tumors increased in size. Computer simulations of the mathematical model will predict tumor, myeloid, and T cell dynamics. These simulations will be particularly useful to uncover information regarding myeloid cell dynamics, such as cell entry time into the tumor microenvironment. Parameter sensitivity analysis of the model will inform us of the biological processes driving these tumor-immune cell dynamics. DISCUSSION/SIGNIFICANCE OF FINDINGS: GBM is a challenge as current intervention are ineffective. This study improves the understanding of glioma infiltrating myeloid cells and their impact on tumor progression. The data will serve as a basis for quantitatively predicting therapeutic responses of a novel combination treatment.
Manuscripts pertaining to paediatric cardiology and CHD have been published in a variety of different journals. Some of these journals are journals dedicated to paediatric cardiology, while others are focused on adult cardiology. Historically, it has been considered that manuscripts published in journals devoted to adult cardiology have greater citation potential. Our objective was to compare citation performance between manuscripts related to paediatric cardiology and CHD published in paediatric as opposed to adult cardiology journals.
Methods:
We identified manuscripts related to paediatric cardiology and CHD published in five journals of interest during 2014. Of these journals, two were primarily concerned with adult cardiology, while the other three focused on paediatric cardiology. The number of citations for these identified manuscripts was gathered from Google Scholar. We compared the number of citations (median, mean, and 25th, 75th, 90th, and 95th percentiles), the potential for citation, and the h-index for the identified manuscripts.
Results:
We identified a total of 828 manuscripts related to paediatric cardiology and congenital heart as published in the 5 journals during 2014. Of these, 783 (95%) were published in journals focused on paediatric cardiology, and the remaining 45 (5%) were published in journals focused on adult cardiology. The median number of citations was 41 in the manuscripts published in the journals focused on adult cardiology, as opposed to 7 in journals focused on paediatric cardiology (p < 0.001). The h-index, however, was greater for the journals dedicated to paediatric cardiology (36 versus 27).
Conclusion:
Approximately one-twentieth of the work relating to paediatric cardiology and CHD is published in journals that focus predominantly on adult cardiology. The median number of citations is greater when manuscripts concerning paediatric cardiology and CHD are published in these journals focused on adult cardiology. The h-index, however, is higher when the manuscripts are published in journals dedicated to paediatric cardiology. While such publications in journals that focus on adult cardiology tend to generate a greater number of citations than those achieved for works published in specialised paediatric cardiology journals, the potential for citation is no different between the journals. Due to the drastically lower number of manuscripts published in journals dedicated to adult cardiology, however, median performance is different.
The Fontan Outcomes Network was created to improve outcomes for children and adults with single ventricle CHD living with Fontan circulation. The network mission is to optimise longevity and quality of life by improving physical health, neurodevelopmental outcomes, resilience, and emotional health for these individuals and their families. This manuscript describes the systematic design of this new learning health network, including the initial steps in development of a national, lifespan registry, and pilot testing of data collection forms at 10 congenital heart centres.
Registry-based trials have emerged as a potentially cost-saving study methodology. Early estimates of cost savings, however, conflated the benefits associated with registry utilisation and those associated with other aspects of pragmatic trial designs, which might not all be as broadly applicable. In this study, we sought to build a practical tool that investigators could use across disciplines to estimate the ranges of potential cost differences associated with implementing registry-based trials versus standard clinical trials.
Methods:
We built simulation Markov models to compare unique costs associated with data acquisition, cleaning, and linkage under a registry-based trial design versus a standard clinical trial. We conducted one-way, two-way, and probabilistic sensitivity analyses, varying study characteristics over broad ranges, to determine thresholds at which investigators might optimally select each trial design.
Results:
Registry-based trials were more cost effective than standard clinical trials 98.6% of the time. Data-related cost savings ranged from $4300 to $600,000 with variation in study characteristics. Cost differences were most reactive to the number of patients in a study, the number of data elements per patient available in a registry, and the speed with which research coordinators could manually abstract data. Registry incorporation resulted in cost savings when as few as 3768 independent data elements were available and when manual data abstraction took as little as 3.4 seconds per data field.
Conclusions:
Registries offer important resources for investigators. When available, their broad incorporation may help the scientific community reduce the costs of clinical investigation. We offer here a practical tool for investigators to assess potential costs savings.
There is variation in care of secundum atrial septal defects. Defects <3 mm and patent foramen ovale are not clinically significant. Defects >3 mm are often followed clinically and may require closure. Variation in how these lesions are monitored may result in over-utilisation of routine studies and higher than necessary patient charges.
Purpose:
To determine utilisation patterns for patients with secundum atrial septal defects diagnosed within the first year of life and compare to locally developed optimal utilisation standard to assess charge savings.
Methods:
This was a retrospective chart review of patients with secundum atrial septal defects diagnosed within the first year of life. Patients with co-existing cardiac lesions were excluded. Total number of clinic visits, electrocardiograms, and echocardiograms were recorded. Total charge was calculated based on our standard institutional charges. Patients were stratified based on lesion and provider type and then compared to “optimal utilisation” using analysis of variance statistical analysis.
Results:
Ninety-seven patients were included, 40 had patent foramen ovale (or atrial septal defect <3 mm), 43 had atrial septal defects not requiring intervention and 14 had atrial septal defects requiring intervention. There was a statistically significant difference in mean charge above optimal for these lesions of $1033, $2885, and $5722 (p < 0.02), respectively. There was statistically significant variation of charge among types of provider as well. Average charge savings per patient would be $2530 with total charge savings of $242,472 if the optimal utilisation pathway was followed.
Conclusion:
Using optimal utilisation and decreasing variation could save the patient significant unnecessary charges.
Recent years have seen an exponential increase in the variety of healthcare data captured across numerous sources. However, mechanisms to leverage these data sources to support scientific investigation have remained limited. In 2013 the Pediatric Heart Network (PHN), funded by the National Heart, Lung, and Blood Institute, developed the Integrated CARdiac Data and Outcomes (iCARD) Collaborative with the goals of leveraging available data sources to aid in efficiently planning and conducting PHN studies; supporting integration of PHN data with other sources to foster novel research otherwise not possible; and mentoring young investigators in these areas. This review describes lessons learned through the development of iCARD, initial efforts and scientific output, challenges, and future directions. This information can aid in the use and optimisation of data integration methodologies across other research networks and organisations.
Using existing data from clinical registries to support clinical trials and other prospective studies has the potential to improve research efficiency. However, little has been reported about staff experiences and lessons learned from implementation of this method in pediatric cardiology.
Objectives:
We describe the process of using existing registry data in the Pediatric Heart Network Residual Lesion Score Study, report stakeholders’ perspectives, and provide recommendations to guide future studies using this methodology.
Methods:
The Residual Lesion Score Study, a 17-site prospective, observational study, piloted the use of existing local surgical registry data (collected for submission to the Society of Thoracic Surgeons-Congenital Heart Surgery Database) to supplement manual data collection. A survey regarding processes and perceptions was administered to study site and data coordinating center staff.
Results:
Survey response rate was 98% (54/55). Overall, 57% perceived that using registry data saved research staff time in the current study, and 74% perceived that it would save time in future studies; 55% noted significant upfront time in developing a methodology for extracting registry data. Survey recommendations included simplifying data extraction processes and tailoring to the needs of the study, understanding registry characteristics to maximise data quality and security, and involving all stakeholders in design and implementation processes.
Conclusions:
Use of existing registry data was perceived to save time and promote efficiency. Consideration must be given to the upfront investment of time and resources needed. Ongoing efforts focussed on automating and centralising data management may aid in further optimising this methodology for future studies.
Optimising short- and long-term outcomes for children and patients with CHD depends on continued scientific discovery and translation to clinical improvements in a coordinated effort by multiple stakeholders. Several challenges remain for clinicians, researchers, administrators, patients, and families seeking continuous scientific and clinical advancements in the field. We describe a new integrated research and improvement network – Cardiac Networks United – that seeks to build upon the experience and success achieved to-date to create a new infrastructure for research and quality improvement that will serve the needs of the paediatric and congenital heart community in the future. Existing gaps in data integration and barriers to improvement are described, along with the mission and vision, organisational structure, and early objectives of Cardiac Networks United. Finally, representatives of key stakeholder groups – heart centre executives, research leaders, learning health system experts, and parent advocates – offer their perspectives on the need for this new collaborative effort.
We evaluated the ability of high-intensity visible violet light with a peak output of 405 nm to kill epidemiologically important pathogens. The high irradiant light significantly reduced both vegetative bacteria and spores at some time points over a 72-hour exposure period.
An internationally approved and globally used classification scheme for the diagnosis of CHD has long been sought. The International Paediatric and Congenital Cardiac Code (IPCCC), which was produced and has been maintained by the International Society for Nomenclature of Paediatric and Congenital Heart Disease (the International Nomenclature Society), is used widely, but has spawned many “short list” versions that differ in content depending on the user. Thus, efforts to have a uniform identification of patients with CHD using a single up-to-date and coordinated nomenclature system continue to be thwarted, even if a common nomenclature has been used as a basis for composing various “short lists”. In an attempt to solve this problem, the International Nomenclature Society has linked its efforts with those of the World Health Organization to obtain a globally accepted nomenclature tree for CHD within the 11th iteration of the International Classification of Diseases (ICD-11). The International Nomenclature Society has submitted a hierarchical nomenclature tree for CHD to the World Health Organization that is expected to serve increasingly as the “short list” for all communities interested in coding for congenital cardiology. This article reviews the history of the International Classification of Diseases and of the IPCCC, and outlines the process used in developing the ICD-11 congenital cardiac disease diagnostic list and the definitions for each term on the list. An overview of the content of the congenital heart anomaly section of the Foundation Component of ICD-11, published herein in its entirety, is also included. Future plans for the International Nomenclature Society include linking again with the World Health Organization to tackle procedural nomenclature as it relates to cardiac malformations. By doing so, the Society will continue its role in standardising nomenclature for CHD across the globe, thereby promoting research and better outcomes for fetuses, children, and adults with congenital heart anomalies.
Patients with hypoplastic left heart syndrome and its variants following palliation surgery are at risk for thrombosis. This study examines variability of antithrombotic practice, the incidence of interstage shunt thrombosis, and other adverse events following Stage I and Stage II palliation within the National Pediatric Cardiology Quality Improvement Collaborative registry.
Methods
We carried out a multicentre, retrospective review using the National Pediatric Cardiology Quality Improvement Collaborative registry including patients from 2008 to 2013 across 52 surgical sites. Antithrombotic medications used at Stage I and Stage II discharge were evaluated. Variability of antithrombotics use at the individual patient level and intersite variability, incidence of shunt thrombosis, and other adverse events such as cardiac arrest, seizure, stroke, and need for cardiac catheterisation intervention in the interstage period were identified. Antithrombotic strategies for hybrid Stage I patients were evaluated but they were excluded from the variability and outcomes analysis.
Results
A total of 932 Stage I and 923 Stage II patients were included in the study: 93.8% of Stage I patients were discharged on aspirin and 4% were discharged on no antithrombotics, and 77% of Stage II patients were discharged on aspirin and 17.5% were discharged on no antithrombotics. Only three patients (0.2%) presented with interstage shunt thrombosis. The majority of patients who died during interstage or required shunt dilation and/or stenting were discharged home on aspirin.
Conclusion
Aspirin is the most commonly used antithrombotic following Stage I and Stage II palliation. There is more variability in the choice of antithrombotics following Stage II compared with Stage I. The incidence of interstage shunt thrombosis and associated adverse events was rare.