Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-27T17:44:57.970Z Has data issue: false hasContentIssue false

Assessing enrollment of eligible infants in the national pediatric cardiology quality improvement collaborative (NPC-QIC) through linkage to the pediatric cardiac critical care consortium (PC4) registry

Published online by Cambridge University Press:  12 July 2023

Katherine E. Bates*
Affiliation:
Division of Pediatric Cardiology, Congenital Heart Center, C.S. Mott Children’s Hospital, University of Michigan Medical School, Ann Arbor, MI, USA
Janet Donohue
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
Wenying Zhang
Affiliation:
Center for Healthcare Outcomes and Policy, University of Michigan, Ann Arbor, MI, USA
Katherine Mikesell
Affiliation:
Division of Pediatric Cardiology, Congenital Heart Center, C.S. Mott Children’s Hospital, University of Michigan Medical School, Ann Arbor, MI, USA
Jeffrey B. Anderson
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
Michael Bingler
Affiliation:
Nemours Cardiac Center, Nemours Children’s Hospital, Orlando, FL, USA
David W. Brown
Affiliation:
Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
Michael G. Gaies
Affiliation:
The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
Nancy Ghanayem
Affiliation:
Department of Pediatrics, University of Chicago Comer Children’s Hospital and Advocate Children’s Hospital, Chicago, IL.
Linda M. Lambert
Affiliation:
Primary Children’s Hospital Heart Center, Salt Lake City, UT, USA
Sara K. Pasquali
Affiliation:
Division of Pediatric Cardiology, Congenital Heart Center, C.S. Mott Children’s Hospital, University of Michigan Medical School, Ann Arbor, MI, USA
David Schidlow
Affiliation:
Department of Cardiology, Boston Children’s Hospital, Boston, MA, USA
Jeffrey Vergales
Affiliation:
Division of Pediatric Cardiology, University of Virginia, Charlottesville, VA, USA
Kurt R. Schumacher
Affiliation:
Division of Pediatric Cardiology, Congenital Heart Center, C.S. Mott Children’s Hospital, University of Michigan Medical School, Ann Arbor, MI, USA
*
Corresponding author: K. E. Bates; Email: kebates@med.umich.edu

Abstract

Background:

The National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) lacks a rigorous enrollment audit process, unlike other collaborative networks. Most centers require individual families to consent to participate. It is unknown whether there is variation across centers or biases in enrollment.

Methods:

We used the Pediatric Cardiac Critical Care Consortium (PC4) registry to assess enrollment rates in NPC-QIC for those centers participating in both registries using indirect identifiers (date of birth, date of admission, gender, and center) to match patient records. All infants born 1/1/2018–12/31/2020 and admitted 30 days of life were eligible. In PC4, all infants with a fundamental diagnosis of hypoplastic left heart or variant or who underwent a surgical or hybrid Norwood or variant were eligible. Standard descriptive statistics were used to describe the cohort and center match rates were plotted on a funnel chart.

Results:

Of 898 eligible NPC-QIC patients, 841 were linked to 1,114 eligible PC4 patients (match rate 75.5%) in 32 centers. Match rates were lower in patients of Hispanic/Latino ethnicity (66.1%, p = 0.005), and those with any specified chromosomal abnormality (57.4%, p = 0.002), noncardiac abnormality (67.8%, p = 0.005), or any specified syndrome (66.5%, p = 0.001). Match rates were lower for patients who transferred to another hospital or died prior to discharge. Match rates varied from 0 to 100% across centers.

Conclusions:

It is feasible to match patients between the NPC-QIC and PC4 registries. Variation in match rates suggests opportunities for improvement in NPC-QIC patient enrollment.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kugler, JD, Beekman, RH, Rosenthal, GL III, et al. Development of a pediatric cardiology quality improvement collaborative: from inception to implementation. from the joint council on congenital heart disease quality improvement task force. Congenit Heart Dis 2009; 4: 318328. DOI: 10.1111/j.1747-0803.2009.00328.x.CrossRefGoogle ScholarPubMed
Anderson, JB, Beekman, RH, Kugler, JD, et al. Improvement in interstage survival in a national pediatric cardiology learning network. Circ: Cardiovasc Qual Outcomes 2015; 8: 428436. DOI: 10.1161/CIRCOUTCOMES.115.001956.Google Scholar
Ferreira-González, I, Marsal, JR, Mitjavila, F, et al. Patient registries of acute coronary syndrome: assessing or biasing the clinical real world data? Circ: Cardiovasc Qual Outcomes 2009; 2: 540547. DOI: 10.1161/CIRCOUTCOMES.108.844399.Google ScholarPubMed
Krumholz, HM. Registries and selection bias: the need for accountability. Circ: Cardiovasc Qual Outcomes 2009; 2: 517518. DOI: 10.1161/CIRCOUTCOMES.109.916601.Google ScholarPubMed
Bufalino, VJ, Masoudi, FA, Stranne, SK, et al. The American heart association’s recommendations for expanding the applications of existing and future clinical registries: a policy statement from the American heart association. Circulation 2011; 123: 21672179. DOI: 10.1161/CIR.0b013e3182181529.CrossRefGoogle ScholarPubMed
Lihn, SL, Kugler, JD, Peterson, LE, Lannon, CM, Pickles, D, Beekman, RH. Transparency in a pediatric quality improvement collaborative: a passionate journey by NPC-qIC clinicians and parents. Congenit Heart Dis 2015; 10: 572580. DOI: 10.1111/chd.12314.CrossRefGoogle Scholar
Gaies, M, Cooper, DS, Tabbutt, S, et al. Collaborative quality improvement in the cardiac intensive care unit: development of the paediatric cardiac critical care consortium (PC4). Cardiol Young 2015; 25: 951957. DOI: 10.1017/S1047951114001450.CrossRefGoogle ScholarPubMed
Schuette, J, Zaccagni, H, Donohue, J, et al. Assessing data accuracy in a large multi-institutional quality improvement registry: an update from the pediatric cardiac critical care consortium (PC4). Cardiol Young 2021; 32: 16. DOI: 10.1017/S1047951121004984.Google Scholar
Gaies, MG, Jeffries, HE, Jacobs, JP, Laussen, PC. Progress in pediatric cardiology. Prog Pediatr Cardiol 2012; 33: 3336. DOI: 10.1016/j.ppedcard.2011.12.006.CrossRefGoogle Scholar
Gaies, M, Donohue, JE, Willis, GM, et al. Data integrity of the pediatric cardiac critical care consortium (PC4) clinical registry. Cardiol Young 2016; 26: 10901096. DOI: 10.1017/S1047951115001833.CrossRefGoogle ScholarPubMed
Gaies, M, Anderson, J, Kipps, A, et al. Cardiac networks united: an integrated paediatric and congenital cardiovascular research and improvement network. Cardiol Young 2019; 29: 111118. DOI: 10.1017/S1047951118001683.CrossRefGoogle ScholarPubMed
Pasquali, SK, Jacobs, JP, Shook, GJ, et al. Linking clinical registry data with administrative data using indirect identifiers: implementation and validation in the congenital heart surgery population. Am Heart J 2010; 160: 10991104. DOI: 10.1016/j.ahj.2010.08.010.CrossRefGoogle ScholarPubMed
Tu, JV, Willison, DJ, Silver, FL, et al. Impracticability of informed consent in the registry of the Canadian stroke network. N Engl J Med 2004; 350: 14141421. DOI: 10.1056/NEJMsa031697.CrossRefGoogle ScholarPubMed
Kho, ME, Duffett, M, Willison, DJ, Cook, DJ, Brouwers, MC. Written informed consent and selection bias in observational studies using medical records: systematic review. BMJ 2009; 338: b866b866. DOI: 10.1136/bmj.b866.CrossRefGoogle ScholarPubMed
Woolf, SH, Rothemich, SF, Johnson, RE, Marsland, DW. Selection bias from requiring patients to give consent to examine data for health services research. Arch Fam Med 2000; 9: 11111118. DOI: 10.1001/archfami.9.10.1111.CrossRefGoogle ScholarPubMed