We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We report the crystal structure of allanite-(Ce), with composition (Ca1.0REE0.9□0.1)Σ2.0(Al1.46Fe3+0.52Fe2+0.76Mg0.12Ti0.15)Σ3.01Si3O12(OH) from the Xinfeng rare earth element (REE)-bearing granite in Guangdong Province, China. It has the unit cell a = 8.9550(4) Å, b = 5.77875(16) Å, c = 10.2053(4) Å, β = 114.929(5)° and Z = 2 in space group P21/m and is characterised by site splitting at M3 into M3a and M3b, at a distance of 0.38(3) Å, which are occupied partially by Fe0.764Mg0.12 and Ti0.15, respectively. The structure was determined by single-crystal X-ray diffraction and refined with anisotropic full-matrix least-squares refinement on F2 to R1 = 2.82%, wR2 = 7.77% for 1856 independent reflections (8772 collected reflections). However, M3 splitting is not present in either ferriallanite-(Ce) or epidote, in which M3 is almost fully occupied either by Fe2+ or by Fe3+. Comparisons of bond lengths and volumes in cation polyhedra among allanite-(Ce), ferriallanite-(Ce) and epidote tend to indicate that the essential factor that facilitates site splitting of M3 in allanite-(Ce) is heterovalent substitution and occupation of a crystallographic site between Fe2+(Mg2+/Mn2+)–Al3+(Ti4+), a common phenomenon in minerals, such as the plagioclase series. Fine structure analysis of the M3 split model revealed that deformation of A2 is related closely to distorted M3, which is consistent with Fe2+ incorporation following REE substitution.
Microtubule-severing protein (MTSP) is critical for the survival of both mitotic and postmitotic cells. However, the study of MTSP during meiosis of mammalian oocytes has not been reported. We found that spastin, a member of the MTSP family, was highly expressed in oocytes and aggregated in spindle microtubules. After knocking down spastin by specific siRNA, the spindle microtubule density of meiotic oocytes decreased significantly. When the oocytes were cultured in vitro, the oocytes lacking spastin showed an obvious maturation disorder. Considering the microtubule-severing activity of spastin, we speculate that spastin on spindles may increase the number of microtubule broken ends by severing the microtubules, therefore playing a nucleating role, promoting spindle assembly and ensuring normal meiosis. In addition, we found the colocalization and interaction of collapsin response mediator protein 5 (CRMP5) and spastin in oocytes. CRMP5 can provide structural support and promote microtubule aggregation, creating transportation routes, and can interact with spastin in the microtubule activity of nerve cells (30). Knocking down CRMP5 may lead to spindle abnormalities and developmental disorders in oocytes. Overexpression of spastin may reverse the abnormal phenotype caused by the deletion of CRMP5. In summary, our data support a model in which the interaction between spastin and CRMP5 promotes the assembly of spindle microtubules in oocytes by controlling microtubule dynamics, therefore ensuring normal meiosis.
A few former studies suggested that there are partial overlaps in abnormal brain structure and cognitive function between hypochondriasis (HS) and schizophrenia (SZ). But their differences in brain activity and cognitive function were unclear.
Methods:
Twenty-one HS patients, 23 SZ patients, and 24 healthy controls (HC) underwent resting-state functional magnetic resonance imaging (rs-fMRI) with the regional homogeneity analysis (ReHo), subsequently exploring the relationship between ReHo value and cognitive functions. The support vector machines (SVM) were used on effectiveness evaluation of ReHo for differentiating HS from SZ.
Results:
Compared with HC, HS showed significantly increased ReHo values in right middle temporal gyrus (MTG), left inferior parietal lobe (IPL), and right fusiform gyrus (FG), while SZ showed increased ReHo in left insula, decreased ReHo values in right paracentral lobule. Additionally, HS showed significantly higher ReHo values in FG, MTG, and left paracentral lobule, but lower in insula than SZ. The higher ReHo values in insula were associated with worse performance in MATRICS consensus cognitive battery (MCCB) in HS group. SVM analysis showed a combination of the ReHo values in insula and FG was able to satisfactorily distinguish the HS and SZ patients.
Conclusion:
Our results suggested that the altered default mode network (DMN), of which abnormal spontaneous neural activity occurs in multiple brain regions, might play a key role in the pathogenesis of HS, and the resting-state alterations of insula are closely related to cognitive dysfunction in HS. Furthermore, the combination of the ReHo in FG and insula was a relatively ideal indicator to distinguish HS from SZ.
Somatic cell nuclear transfer (SCNT) holds vast potential in agriculture. However, its applications are still limited by its low efficiency. Histone 3 lysine 9 trimethylation (H3K9me3) was identified as an epigenetic barrier for this. Histone demethylase KDM4D could regulate the level of H3K9me3. However, its effects on buffalo SCNT embryos are still unclear. Thus, we performed this study to explore the effects and underlying mechanism of KDM4D on buffalo SCNT embryos. The results revealed that compared with the IVF embryos, the expression level of KDM4D in SCNT embryos was significantly lower at 8- and 16-cell stage, while the level of H3K9me3 in SCNT embryos was significantly higher at 2-cell, 8-cell, and blastocyst stage. Microinjection of KDM4D mRNA could promote the developmental ability of buffalo SCNT embryos. Furthermore, the expression level of ZGA-related genes such as ZSCAN5B, SNAI1, eIF-3a, and TRC at the 8-cell stage was significantly increased. Meanwhile, the pluripotency-related genes like POU5F1, SOX2, and NANOG were also significantly promoted at the blastocyst stage. The results were reversed after KDM4D was inhibited. Altogether, these results revealed that KDM4D could correct the H3K9me3 level, increase the expression level of ZGA and pluripotency-related genes, and finally, promote the developmental competence of buffalo SCNT embryos.
We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped (DSCCP) fiber amplifiers. A semi-analytical model taking the side-pumping schemes, transverse mode competition, and stimulated thermal Rayleigh scattering into consideration has been built, which can model the static and dynamic mode evolution in high-power DSCCP fiber amplifiers. The mode evolution behavior has been investigated with variation of the fiber amplifier parameters, such as the pump power distribution, the length of the DSCCP fiber, the averaged coupling coefficient, the number of the pump cores and the arrangement of the pump cores. Interestingly, it revealed that static mode evolution induced by transverse mode competition is different from the dynamic evolution induced by stimulated thermal Rayleigh scattering. This shows that the high-order mode experiences a slightly higher gain in DSCCP fiber amplifiers, but the mode instability thresholds for DSCCP fiber amplifiers are higher than those for their end-coupled counterparts. By increasing the pump core number and reducing the averaged coupling coefficient, the mode instability threshold can be increased, which indicates that DSCCP fibers can provide additional mitigation strategies of dynamic mode instability.
This study aimed to explore the impacts of COVID-19 outbreak on mental health status in general population in different affected areas in China.
Methods
This was a comparative study including two groups of participants: (1) general population in an online survey in Ya'an and Jingzhou cities during the COVID-19 outbreak from 10–20 February 2020; and (2) matching general population selected from the mental health survey in Ya'an in 2019 (from January to May 2019). General Health Questionnaire (GHQ-12), Self-rating Anxiety Scale (SAS), and Self-rating Depression Scale (SDS) were used.
Results
There were 1775 participants (Ya'an in 2019 and 2020: 537 respectively; Jingzhou in 2020: 701). Participants in Ya'an had a significantly higher rate of general health problems (GHQ scores ⩾3) in 2020 (14.7%) than in 2019 (5.2%) (p < 0.001). Compared with Ya'an (8.0%), participants in Jingzhou in 2020 had a significantly higher rate of anxiety (SAS scores ⩾50, 24.1%) (p < 0.001). Participants in Ya'an in 2020 had a significantly higher rate of depression (SDS scores ⩾53, 55.3%) than in Jingzhou (16.3%) (p < 0.001). The risk factors of anxiety symptoms included female, number of family members (⩾6 persons), and frequent outdoor activities. The risk factors of depression symptoms included participants in Ya'an and uptake self-protective measures.
Conclusions
The prevalence of psychological symptoms has increased sharply in general population during the COVID-19 outbreak. People in COVID-19 severely affected areas may have higher scores of GHQ and anxiety symptoms. Culture-specific and individual-based psychosocial interventions should be developed for those in need during the COVID-19 outbreak.
The disease burden of infectious diarrhea cannot be underestimated. Its seasonal patterns indicate that weather patterns may play an important role and have an important effect on it. The objective of this study was to clarify the relationship between temperature and infectious diarrhea, and diarrhea-like illness.
Methods:
Distributed lag non-linear model, which was based on the definition of a cross-basis, was used to examine the effect.
Results:
Viral diarrhea usually had high incidence in autumn-winter and spring with a peak at -6°C; Norovirus circulated throughout the year with an insignificant peak at 8°C, while related bacteria usually tested positive in summer and peaked at 22°C. The lag-response curve of the proportion of diarrhea-like cases in outpatient and emergency cases revealed that at -6°C, with the lag days increasing, the proportion increased. Similar phenomena were observed at the beginning of the curves of virus and bacterial positive rate, showing that the risk increased as the lag days increased, peaking on days 16 and 9, respectively. The shape of lag-response curve of norovirus positive rate was different from others, presenting m-type, with 2 peaks on day 3 and day 18.
Conclusion:
Weather patterns should be taken into account when developing surveillance programs and formulating relevant public health intervention strategies.
Continuous hBN films have been grown by means of a radio-frequency-sputtering technology, and their material properties have been investigated. The prepared hBN films can achieve good smoothness in a large area. The surface morphologies and compositions of the hBN films on Si substrate and Al film have been characterized, indicating that there is no difference. The 101-phase peak of hBN film is the strongest, and the optical band gap of the fabricated film is 5.84 eV. An attempt on the fabrication of the hBN based resistive switching (RS) device has been made by using an Ag/hBN/Al structure, leading to the observation of a clear and stable RS behavior. The device exhibits a resistance window (high-resistivity state/low-resistivity state) of around 102, and the RS behaviors of hBN film prepared by sputtering were first observed. It has been found that the opening voltage for the device is changed when a different cycle voltage is applied because of the built-in electric field increasing with the increase of applied cycle voltage. The mechanism of the RS behavior has been analyzed, which lay a foundation for the application of hBN as RS material in resistive random access memory to improve the storage density.
Reward dysfunction is a major dimension of depressive symptomatology, but it remains obscure if that dysfunction varies across different reward types. In this study, we focus on the abnormalities in anticipatory/consummatory processing of monetary and social reward associated with depressive symptoms.
Methods
Forty participants with depressive symptoms and forty normal controls completed the monetary incentive delay (MID) and social incentive delay (SID) tasks with event-related potential (ERP) recording.
Results
In the SID but not the MID task, both the behavioral hit rate and the ERP component contingent negative variation (CNV; indicating reward anticipation) were sensitive to the interaction between the grouping factor and reward magnitude; that is, the depressive group showed a lower hit rate and a smaller CNV to large-magnitude (but not small-magnitude) social reward cues compared to the control group. Further, these two indexes were correlated with each other. Meanwhile, the ERP components feedback-related negativity and P3 (indicating reward consumption) were sensitive to the main effect of depression across the MID and SID tasks, though this effect was more prominent in the SID task.
Conclusions
Overall, we suggest that depressive symptoms are associated with deficits in both the reward anticipation and reward consumption stages, particularly for social rewards. These findings have a potential to characterize the profile of functional impairment that comprises and maintains depression.
The docking simulators are significant ground test equipment for aerospace projects. The fidelity of docking simulation highly depends on the accuracy performance. This paper investigates the kinematic accuracy for the developed docking simulator. A novel kinematic calibration method which can reduce the number of parameters for error modeling is presented. The principle of parameters separation is studied. A simplified error model is derived based on Taylor series. This method can contribute to the simplification of the error model, fewer measurements, and easier convergence during the parameters identification. The calibration experiment validates this method for further accuracy enhancement.
Preoperative nutritional status plays an important role in predicting postoperative outcomes. Prognostic Nutritional Index (PNI) and Controlling Nutritional Status (CONUT) are good tools to assess patients’ nutritional status. They have been used in predicting outcomes in various malignancies, but few studies have focused on pancreatic adenocarcinoma (PDAC) patients. Totally, 306 PDAC patients were enrolled. The propensity score matching (PSM) method was introduced to eliminate the baseline inequivalence. Patients with different PNI (or CONUT) scores showed inequivalence baseline characteristics, and patients with compromised nutritional status were related with a more advanced tumour stage. After PSM, the baseline characteristics were well balanced. Both low PNI (≤45) and high CONUT (≥3) were independent risk factors for poor overall survival (P < 0·05), and the result remained the same after PSM. Survival analysis demonstrated both patients with low PNI and high CONUT score were associated with poorer survival, and the result remained the same after PSM. The results of AUC indicated that CONUT might have a higher sensitivity and specificity in predicting complications and survival. Preoperative low PNI (≤45) and high CONUT (≥3) scores might be reliable predictors of prognosis and surgical complications in PDAC patients. Compared with PNI, CONUT might be more effective.
To improve speech emotion recognition, a U-acoustic words emotion dictionary (AWED) features model is proposed based on an AWED. The method models emotional information from acoustic words level in different emotion classes. The top-list words in each emotion are selected to generate the AWED vector. Then, the U-AWED model is constructed by combining utterance-level acoustic features with the AWED features. Support vector machine and convolutional neural network are employed as the classifiers in our experiment. The results show that our proposed method in four tasks of emotion classification all provides significant improvement in unweighted average recall.
Situated between the North China Craton to the east and the Tarim Craton to the west, the northern Alxa area in westernmost Inner Mongolia in China occupies a key location for interpreting the late-stage tectonic evolution of the southern Central Asian Orogenic Belt. New LA-ICP-MS zircon U–Pb dating results reveal 282.2 ± 3.9 Ma gabbros and 216.3 ± 3.2 Ma granites from the Yagan metamorphic core complex in northern Alxa, NW China. The gabbros are characterized by low contents of Si, Na, K, Ti and P and high contents of Mg, Ca, Al and Fe. These gabbros have arc geochemical signatures with relative enrichments in large ion lithophile elements and depletions in high field strength elements, as well as negative εNd(t) (−0.91 to −0.54) and positive εHf(t) (2.59 to 6.37) values. These features indicate that a depleted mantle magma source metasomatized by subduction fluids/melts and contaminated by crustal materials was involved in the processes of magma migration and emplacement. The granites show high-K calc-alkaline and metaluminous to weakly peraluminous affinities, similar to A-type granites. They have positive εNd(t) (1.55 to 1.99) and εHf(t) (5.03 to 7.64) values. These features suggest that the granites were derived from the mixing of mantle and crustal sources and formed in a postcollisional tectonic setting. Considering previous studies, we infer that the final closure of the Palaeo-Asian Ocean in the central part of the southern Central Asian Orogenic Belt occurred in late Permian to Early–Middle Triassic times.
This study seeks to identify healthcare utilization patterns following symptomatic respiratory tract infections (RTIs) and the variables that may influence these patterns.
Background:
RTIs are responsible for the bulk of the primary healthcare burden worldwide. Yet, the use of health services for RTIs displays great discrepancies between populations. This research examines the influence of social demographics, economic factors, and accessibility on healthcare utilization following RTIs.
Methods:
Structured interviews were administered by trained physicians at the households of informants selected by cluster randomization. Descriptive and multivariate binary logistic regression analysis was performed to assess healthcare utilization and associated independent variables.
Findings:
A total of 60 678 informants completed the interviews. Of the 2.9% informants exhibiting upper RTIs, 69.5–73.9% sought clinical care. Healthcare utilization rates for common cold, influenza, nine acute upper RTIs, and overall RTIs demonstrate statistically significant associations with the variables of age, type of residence, employment, medical insurance, annual food expenditure, distance to medical facilities, and others. The odds ratios for healthcare utilization rates varied substantially, ranging from 0.026 to 9.364. More than 69% of informants with RTIs sought clinical interventions. These findings signify a marked issue with the large amount of healthcare for self-limited RTIs.
Androgenetic embryonic stem (AgES) cells offer a possible tool for patient-specific pluripotent stem cells that will benefit genomic imprinting studies and clinic applications. However, the difficulty in producing androgenetic embryos and the unbalanced expression of imprinted genes make the therapeutic applicability of AgES cells uncertain. In this study, we produced androgenetic embryos by injecting two sperm into an enucleated metaphase II (MII) oocyte. By this method, 88.48% of oocytes survived after injection, and 20.24% of these developed to the blastocyst stage. We successfully generated AgES cell lines from the androgenetic embryos and assayed the expression of imprinted genes in the cell lines. We found that the morphological characteristics of AgES cells were similar to that of fertilized embryonic stem cells (fES), such as expression of key pluripotent markers, and generation of cell derivatives representing all three germ layers following in vivo and in vitro differentiation. Furthermore, activation of paternal imprinted genes was detected, H19, ASC12 and Tss3 in AgES cell activation levels were lower while other examined genes showed no significant difference to that of fES cells. Interestingly, among examined maternal imprinted genes, only Mest and Igf2 were significantly increased, while levels of other detected genes were no different to that of fES cells. These results demonstrated that activation of some paternal imprinted genes, as well as recovery of maternal imprinted genes, was present in AgES cells. We differentiated AgES cells into a beating embryoid body in vitro, and discovered that the AgES cells did not show significant higher efficiency in myocardial differentiation potential.
Permian faunal affinity in the Lhasa Block plays a critical role in reconstructing its paleogeographic evolution. Cisuralian and Guadalupian faunas have been described from the Lhasa Block, but very few Lopingian (late Permian) brachiopods have been reported so far. In this paper, a new diverse brachiopod fauna consisting of 17 species of 17 genera and an unidentifiable Orthotetoidea is described from the uppermost part of the Xiala Formation at the Aduogabu section in the central part of the Lhasa Block. The age of this fauna can be assigned to the Changhsingian (late Lopingian) as indicated by the associated foraminifers Colaniella parva (Colani, 1924) and Reichelina pulchra Miklukho-Maklay, 1954. Characteristic brachiopods include Spinomarginifera chengyaoyenensis Huang, 1932, Haydenella wenganensis (Huang, 1932), and Araxathyris cf. dilatatus Shen, He, and Zhu, 1992. They also generally suggest a Changhsingian age. Paleobiogeographically, this fauna is uniformly composed of typical Tethyan elements represented by Spinomarginifera Huang, 1932 and Haydenella Reed, 1944, and some cosmopolitan elements, but no typical cold-water taxa of Gondwanan affinity. This is in contrast to the contemporaneous brachiopod faunas from the Tethys Himalayan region that are characterized by typical cold-water taxa of Gondwanan affinity, e.g., Costiferina indica (Waagen, 1884), Retimarginifera xizangensis Shen et al., 2000, Neospirifer (Quadrospina) tibetensis Ding, 1962. Thus, it is strongly indicative that the Lhasa Block had drifted into a relatively warm-water regime during the Changhsingian. An analysis of the paleobiogeographic change of brachiopods in the Lhasa Block throughout the entire Permian further suggests that the Lhasa Block probably had rifted away from the northern peri-Gondwanan margin between the latest Cisuralian and middle Guadalupian, that is, the Neotethys Ocean had opened before middle Guadalupian.
The interaction between galaxies is believed to be the main origin of the peculiarities of galaxies. It can disturb not only the morphology but also the kinematics of galaxies. These disturbed and asymmetric features are the indicators of galaxy interaction. We study the velocity field of ionized gas in galaxy pairs based on MaNGA survey. Using the kinemetry package, we fit the velocity field and quantify the degree of kinematic asymmetry. We find that the fraction of high kinematic asymmetry is much higher for galaxy pairs with dp⩽30h−1kpc. Moreover, compared to a control sample of single galaxies, we find that the star formation rate is enhanced in paired galaxies with high kinematic asymmetry. For paired galaxies with low kinematic asymmetry, no significant SFR enhancement has been found. The galaxy pairs with high kinematic asymmetry are more likely to be real interacting galaxies rather than projected pairs.
Paediatric Mycoplasma pneumoniae pneumonia (MPP) is a major cause of community-acquired pneumonia in China. Data on epidemiology of paediatric MPP from China are little known. This study retrospectively collected data from June 2006 to June 2016 in Beijing Children's Hospital, Capital Medical University of North China and aims to explore the epidemiological features of paediatric MPP and severe MPP (SMPP) in North China during the past 10 years. A total of 27 498 paediatric patients with pneumonia were enrolled. Among them, 37.5% of paediatric patients had MPP. In this area, an epidemic took place every 2–3 years at the peak, and the positive rate of MPP increased during these peak years over time. The peak age of MPP was between the ages of 6 and 10 years, accounting for 75.2%, significantly more compared with other age groups (χ2 = 1384.1, P < 0.0001). The epidemics peaked in September, October and November (χ2 = 904.9, P < 0.0001). Additionally, 13.0% of MPP paediatric patients were SMPP, but over time, the rate of SMPP increased, reaching 42.6% in 2016. The mean age of paediatric patients with SMPP (6.7 ± 3.0 years old) was younger than that of patients with non-SMPP (7.4 ± 3.2 years old) (t = 3.60, P = 0.0001). The prevalence of MPP and SMPP is common in China, especially in children from 6 to 10 years old. Paediatric patients with SMPP tend to be younger than those with non-SMPP. MPP outbreaks occur every 2–3 years in North China. September, October and November are the peak months, unlike in South China. Understanding the epidemiological characteristics of paediatric MPP can contribute to timely treatment and diagnosis, and may improve the prognosis of children with SMPP.
Subacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.
Let $\mathbf{M}=(M_{1},\ldots ,M_{k})$ be a tuple of real $d\times d$ matrices. Under certain irreducibility assumptions, we give checkable criteria for deciding whether $\mathbf{M}$ possesses the following property: there exist two constants $\unicode[STIX]{x1D706}\in \mathbb{R}$ and $C>0$ such that for any $n\in \mathbb{N}$ and any $i_{1},\ldots ,i_{n}\in \{1,\ldots ,k\}$, either $M_{i_{1}}\cdots M_{i_{n}}=\mathbf{0}$ or $C^{-1}e^{\unicode[STIX]{x1D706}n}\leq \Vert M_{i_{1}}\cdots M_{i_{n}}\Vert \leq Ce^{\unicode[STIX]{x1D706}n}$, where $\Vert \cdot \Vert$ is a matrix norm. The proof is based on symbolic dynamics and the thermodynamic formalism for matrix products. As applications, we are able to check the absolute continuity of a class of overlapping self-similar measures on $\mathbb{R}$, the absolute continuity of certain self-affine measures in $\mathbb{R}^{d}$ and the dimensional regularity of a class of sofic affine-invariant sets in the plane.