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Abstract

SARS-CoV-2 rapidly spreads among humans via social networks, with social mixing and
network characteristics potentially facilitating transmission. However, limited data on topo-
logical structural features has hindered in-depth studies. Existing research is based on snapshot
analyses, preventing temporal investigations of network changes. Comparing network charac-
teristics over time offers additional insights into transmission dynamics. We examined con-
firmed COVID-19 patients from an eastern Chinese province, analyzing social mixing and
network characteristics using transmission network topology before and after widespread
interventions. Between the two time periods, the percentage of singleton networks increased
from 38.9% to 62.8 % ðp < 0:001Þ; the average shortest path length decreased from 1.53 to 1.14
ðp < 0:001Þ; the average betweenness reduced from 0.65 to 0.11 ðp < 0:001Þ; the average cluster
size dropped from 4.05 to 2.72 ðp¼ 0:004Þ; and the out-degree had a slight but nonsignificant
decline from 0.75 to 0.63 ðp¼ 0:099Þ: Results show that nonpharmaceutical interventions
effectively disrupted transmission networks, preventing further disease spread. Additionally, we
found that the networks’ dynamic structure provided more information than solely examining
infection curves after applying descriptive and agent-based modeling approaches. In summary,
we investigated social mixing and network characteristics of COVID-19 patients during differ-
ent pandemic stages, revealing transmission network heterogeneities.

Introduction

SARS-CoV-2 is characterised by a high transmission rate and has rapidly spread globally
[1, 2]. Transmission of SARS-CoV-2 is largely dependent on social network structures and
clinical characteristics of people with disease [3]. Despite this, transmission networks in the
context of SARS-CoV-2 and how they have changed throughout the pandemic have been poorly
and insufficiently described [4–7].

With a robust and comprehensive COVID-19 surveillance system in Zhejiang Province,
China, we collected individual-level data of all confirmed COVID-19 cases in Zhejiang, China
[8, 9]. All cases with directed epidemiological linkage form a transmission network (see Data
Source for details). Thus, we utilised such data to further our understanding of transmission
networks and how they change over time. We aimed to report COVID-19 transmission network
characteristics, graphical structures of disease networks, and hownetworks were impacted by and
associated with nonpharmaceutical interventions (NPIs), including social distancing, active case
finding, and controlling policy for household members.

Through COVID-19 case investigations, patients’ transmission network and their social
characteristics were collected. We first reported on all observed network links and then explored
the dynamics of network topological structure (before and after widespread interventions). To
illustrate whether network structures are closely related to disease-spreading processes, we then
built network models to simulate underlying transmission processes by incorporating social
contact strength [10, 11], age distribution [12, 13], and family contribution of symptomatic cases
[14, 15].With these networkmodels, simulations were constructed to study dynamic associations
between the development of an epidemic and the transmission network structure under distinct
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scenarios. Through field investigations, we identified heterogene-
ities in the dynamic changes in the transmission network structure
associated with social characteristics. Then, we conducted a com-
prehensive exploration of the mechanism through advanced mod-
elling techniques and found that interventions may regulate
infection risk based on social structures. We anticipated that our
results will provide guidance for future outbreak control.

Materials and methods

Data source

We collected individual-level data on 1,349 SARS-CoV-2 infections
during the COVID-19 pandemic in Zhejiang Province, China, from
8 January to 23 February 2020 (seeData source in the Supplementary
materials for more details). The data contain detailed information
about each diagnosed case such as their personal information (age,
gender, family, occupation location, the severity of infection,
imported cases or not, date of symptom onset, and date of laboratory
confirmation) and, more critically, their potential exposures, that is
epidemiological linkage to other cases identified through contact
tracing efforts. Here, we assumed that there was no re-infection
(i.e. one cannot be infected by SARS-CoV-2 more than once in a
relatively short period) and also no co-infection (because there is only
one source case for each infected patient). The infector–infectee
transmission pairs constructed the transmission networks. Edges
directly connecting individuals (called nodes) formed a cluster. Each
node and edge inside had heterogeneity with respect to their social
features. The topological characteristics of the networks changed
with time. To better understand the patterns and drivers of such
heterogeneity, we analysed the network quantitatively.

Description of network features

To quantitatively describe the networks, we measured the structure
of five key characteristic parameters: (a) out-degree (number of
secondary cases); (b) shortest path length (number of directed steps
along the shortest paths between network nodes); (c) betweenness
centrality [16] (how important a node is in terms of connecting

other nodes [17]); (d) diameter of clusters (generations of the
spreading); and (e) cluster size (see Methods in Supplementary
Material for more formal, detailed definitions [18–21]).

The average shortest path length between nodes measures how
far one node is from another and thus can be used to quantify the
connectivity of a network. Typically, for a directed transmission
network, the average shortest path length characterises its ability to
expand and extend. Networks with a shorter average shortest path
length tend to have fewer branches along the transmission chain
and are also less likely to introduce a large infection generation
(i.e. shorter transmission chains). Betweenness centrality measures
the importance of a node in terms of connecting other nodes [17],
that is for disease spreading. If nodes with high betweenness
centrality were removed from the network, the network would have
diminished. In Figure 1, we provided four illustrative examples to
demonstrate how thesemeasures capture the presence of additional
branches and longer chains in a transmission network and identify
the nodes with higher reproductive potential. We could observe
clusters A and D from our data, while clusters B and C were
conceptual.

We also defined superspreaders as cases with an out-degree of at
least three (which is the 95% quantile of the distribution of out-
degree; see Figure 4). By considering in-degree (1 or 0 in a trans-
mission network; the source of an individual’s infection) and out-
degree information, we could define singletons (isolated nodes),
index cases (the source of each cluster), and terminal cases (the
terminal node of each cluster). The mathematical definitions and
key concepts in a network analysis such as nodes, edges, singletons,
clusters, and other network quantities are described in detail in the
Supplementary materials.

To perform a comparison of topological characteristics of the
transmission network across time, we chose a time point to split the
network into two periods. Zhejiang provincial government
upgraded its infectious disease alert category to the highest level
on 23 January 2020, began an officially comprehensive set of
restrictions on 1 February 2020, and started reopening on
10 February. Before the governmental announcement, however,
on 20 January evidence of human-to-human transmission was
already confirmed and raised public awareness. Consequently,

Figure 1.Observed clusters (A andD) and hypothetical examples (B andC) and their respective basic graphicalmeasures. The average shortest path length represents the ability of a
network to expand and extend, and the average betweenness measures the average level of contribution for disease spreading. In each cluster, we highlighted nodes and paths
contributing greatly to the viral transmission, which is reflected by their high out-degree and high betweenness centrality (i.e. node importance) and longest path length (i.e. path
importance). Hence, the clusters decrease in extensibility from cluster D to cluster A due to reduced branching, and the number and influence of central cases in disease
transmission also decline.
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outbreaks in Wuhan and reports from news media had already
triggered nationwide voluntary social distancing and personal pro-
tection before 23 January. Another key factor was Chinese New
Year’s Eve on 24 January. Schools had already been on holiday for a
while, and work-related social contacts were at very low levels with
the majority of the population taking vacations. Therefore, we
believed that before 23 January, the average contact numbers had
already dropped significantly and achieved the lowest level shortly
after 23 January [22]. Hence, we split the overall network by the
declaration date (23 January) to study topological changes in the
transmission network (Figure 5).

Statistical analysis

Arithmetic means and proportions were used for count/ordinal and
binary variables, respectively. We used cluster-based bootstrapping
[23] to estimate the uncertainty of statistics and conduct hypothesis
tests. In particular, we performed 1000 iterations of re-sampling from
clusters (i.e. sub-networks that are separated from one another) with
replacement to create bootstrapped samples. These samples were
then disjointly rejoined to create a pseudo-network sample, and the
quantity of interest was calculated for each of these samples. We
tested the difference between ordinal variables with Student’s t-test
and χ2 test and binary variables with two proportion z-test [24]. To
control the false discovery rate in multiple testing, the Benjamini–
Hochberg procedure [25] was used to adjust the p-values. Nonpara-
metric bootstrap percentiles are used to obtain the 95% confidence
interval of each quantity. The 95% confidence interval is then esti-
mated by the 2.5 and 97.5 percentiles of the 100 results.

Agent-based transmission network model

Informed by the observed data, we generated a pseudo-transmission
network to comprehensively study the heterogeneous dynamics of
the spreading of this COVID-19 outbreak. We assumed that the
transmission network is built upon a pre-generated weighted social
connection network. Edges, representing social connections between
individuals, were weighted based on the types of connections: house-
hold, geographical, and random social connections. We fixed the
structure of the network, only allowing the weight of edges to vary to
represent the changing pattern of social connections. Social contacts
between individuals were sampled upon the pre-generated social
connection network and infectious contacts occurred through these
social contacts. We implemented the susceptible-exposed–
infectious-removed (SEIR)model, which subdivides individuals into
four transition states: susceptible, exposed, infectious, and removed
[26], to characterise the transmissiondynamics ofCOVID-19.More-
over,we categorised patients into 14 age intervalswith a 5-year length
to construct a time-varying age-specific contact pattern based on the
contact matrix between age groups from surveys conducted in
Shanghai [11].

There are multiple steps for generating the network, which is
summarised and labelled in Figure 2, along with key parameters
described in Table S1 in the Supplementary Material. In detail, we
first generated a social connection network with the following
procedures:

a. We generated 20,000 nodes (the observed number of close
contacts related to 1,349 confirmed cases is approximately
18,000) and distributed them into different families with an
average size of 2.95 (see Figure S10 in the Supplementary

Material). Each family member was assigned to one of 14 age
groups based on the observed distribution of those same 14 age
groups in real families of equal size. For individuals residing
alone, we randomly assigned their age distribution using the
census age distribution in Zhejiang (see Figure S11 in the
Supplementary Material, [27]).

b. Next, to assign geographic locations to each individual, we
randomly sampled a coordinate from a uniform distribution
within a square region. Each node in the network could
interact with several other nodes, and these interactions were
dependent on their respective locations. To be more specific,
let cbase be the age-specific contact matrix in Shanghai before
the outbreak and the i, jð Þ element represented the contact
number of the ith age group with the jth age group. The sum
of the ith row of the contact matrix was noted as ni , which
represented the average number of contacts per day of a
person in the ith age group. Here, ni should be less than
the number of connections (i.e. the number of acquaintances
that one can have), and thus, the ith node was assumed to
have a connection with γ1ni acquaintances. We also normal-
ised the rows of cbase to get the probability of contact of the ith

age group with the jth age group, denoted as pi,j. Accordingly,
for an individual in the ith age group, we randomly connected
him/her to γ1ni,j other nodes among the γ1γ2ni,j closest nodes
of the jth age group, where ðni,1,…,ni,14) were sampled from
the multinomial distribution with a total number ni and
incident rate pi ¼ pi,1,…,pi,14

� �
. Here, γ1 and γ2 represented

the inflation factor to reflect the randomness of the connec-
tion. To facilitate contacts from a larger number of acquaint-
ances and allow for relatively long-distance interactions, we
set the parameters γ1 and γ2 to be equal to 2. Results of
a sensitivity analysis indicated that different combinations
of parameters (the values of γ1 and γ2 ranging from 1.5 to
3) have little impact on the general structure of the simulated
transmission networks, but a small effect on the total
number of infections and the proportion of household
transmission. This is because the choice of parameters affects
the likelihood of long-distance transmissions and infections
outside families.

c. To reflect the small-world property of the social network [17],
we allowed each node to connect with an average of 1 other
node at random [4].

d. We assigned a weight measure to characterise the import-
ance of different connections [4, 6]. Interventions may
impact the transmission network by reducing some contact
types (e.g. co-workers under the order of working from
home) but risking other types (e.g. household members).
We modelled with varied weights of network edges. Typic-
ally, weights of size 3.716, 0.5, and 0.5 would be taken for
household connection, geographical connection, and ran-
dom connection, respectively. We raised the weight of the
household to 5.041 during the period with the highest-level
alert, which ensures that the fraction of contacts at home is
50% during the early outbreak and 79% during that period,
based on the contact survey in Shanghai [11]. Combining all
the undirected connections above with their weights, we
could get a weighted social connection network where each
individual connects to their acquaintances, that is the prob-
ability of an occurrence of contact is then calculated using a
softmax transformation:
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P nodeg contacts nodekð Þ¼ exp wgk

� �

P

j∈Ng

exp wgj

� � (1)

represents the weight between two random nodes g and k.
Based on the pre-specified weighted social network, we simu-

lated the dynamic transmission network with the following pro-
cedures (Figure 2):

e. First, we randomly sampled and inserted 445 nodes among the
social network (which is the reported number of imported
cases in the epidemic data of Zhejiang) as the index cases into
the transmission network, following the same rate of introduc-
tion as the observed imported cases (as shown in the Supple-
mentaryMaterial, Figure S8(b)). As soon as an index case is put
into the transmission network, it transfers to the infectious
state.

f. To reflect the contact patterns that vary by time and age, we
considered that the daily contact matrix would initially
decrease following the start of the outbreak and gradually
return to its previous level once the outbreak was brought
under control. The previous and outbreak daily contact matri-
ces were based on the evidence of another study conducted in
Shanghai, China [11]. The interventions were applied progres-
sively such that the decline occurred from 10 January, when
people began to return home for the Spring Festival, to
23 January, when the provincial government declared a
highest-level response. The suppression of social contacts
lasted for around one month, until 10 February (the day of
the reopening in Zhejiang Province). This was subsequently
followed by an increase of up to 50% of the baseline after a
month. The details of the construction of the daily contact
matrix c dð Þ are given in the Supplementary material.

g. In day d, for a node during the infectious state, we let it contact
its neighbours by the weighted social network generated above
and following the age-specific contact pattern given by the
contact matrix c dð Þ . In detail, we randomly sampled the
potential infectees with replacement from the neighbours of
an infector in ith age group on day d, using amultinomial mass
with incident rate calculated from the normalised weight on
the equation (1). After that, we randomly added (from its
neighbours) or pruned these age-indexed contacts according
to the real-time contact vector of ith age group with different
age groups, which was randomly generated from the multi-
nomial mass with the summation of ith row of c dð Þ as the total
number of contacts and the normalised ith row of c dð Þ as the
incident rate. In particular, if the infector did not connect to

any person in some age groups among the pre-specified social
network, we repeated the above step until the corresponding
real-time contact numbers also meet zero.

h. Infection risk may associate with age [12, 13]. Thus, we
assumed an age-specific susceptibility ðsj) (see in the Supple-
mentary Material, Figure S1) according to a previous study
[12] and a time-dependent rate of transmissibility (T) from
symptom [8] (i.e. transmissibility changes in infectious period
and peaks at symptom onset; see Table S3 in the Supplemen-
tary Material). The probability of transmission occurring ðβ)
for a contact is the product of the common transmissibility and
susceptibility based on the age of the potential infectees. If a
susceptible node makes contact n times with an infectious
individual on the same day, then the incident probability will
be 1� 1�βð Þn . After being infected, individuals will be
assumed to move to the exposed stage.

i. Every infected node during the exposed stage had an incuba-
tion period (the duration from being exposed to symptom
onset), which is sampled from a log-normal distribution with
a log mean of 4.20 and a log standard deviation of 1.94 [28,
29]. We also considered pre-symptomatic infectiousness; that
is, infected people can spread the virus to others before the
onset of symptoms [29, 30]. We assumed that the duration
from exposure to becoming infectious also follows a log-
normal pattern and is a random proportion of the incubation
period reciprocally following a log-normal distribution with a
log mean of 0.04 and a log standard deviation of 0.59. These
choices of parameters were chosen to ensure that the duration
of the pre-symptomatic infectious period has a mean of 1 [30,
31]. Once an individual becomes infectious, theywill transfer to
an infectious state. Infected patients commonly produce post-
symptomatic viral shedding [29, 32], so a post-symptomatic
infectious period is also considered. It is the duration of infec-
tiousness after symptom onset, which is sampled from a
gamma distribution with parameters 5 and 1.4 [33]. The overall
infectious period is thus 8 days.

j. As long as an individual develops symptoms or is imported on
day d, we assigned it a removal period (duration from symp-
tom onset to being quarantined, reflecting the speed of case
finding) according to our observed removal period, which was
progressively decreased from above 19 days to below 1 day
(Supplementary Material, Figure S8(a)). A node during the
infectious state is assumed to transfer to the removed state after
the end of the removed period. If the removal period is larger
than the corresponding post-symptomatic infectious period,
the infected individuals lose infectiousness before being
removed or vice versa.

Transmission

network

Figure 2. Mechanism of the network generation. The procedures for simulations are marked with a to k, respectively.
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k. For each day d, we recorded the transmission pairs between
infectors and infectees. Under the transmission information
up to day d, we were then able to obtain a dynamic transmis-
sion network on day d. Eventually, if there are no longer any
infectious nodes, the pandemic will stop. For computation
considerations, we only simulated 100 days and presented
the results in Figures 7 and 8.

Simulation under population densities, the intensity of social
contacts, and levels of case finding

Interventions alter both the pattern of social contact and disease
spreading and thereby affect the structure of resulted transmission
networks. Therefore, to comprehensively explore the relationship
between viral spreading and the dynamics of the resulting trans-
mission network, it is necessary to consider interventions under
various settings and intensities. Here, we considered seven scen-
arios of simulations with various baseline social contact patterns,
social distancing intensity, and household contact tracing policy.
Based on our network generation setting, we further considered the
case with 50% baseline social contact frequency for simulating the
outbreak inmore sparsely populated areas (denoted as C(L), mean-
ing Contact(Low), as opposite to C(H), meaning Contact(High),
which represents the original case). Regarding the social distancing
policy, we considered three typical types of intensity: strict lock-
down (L(S), meaning Lockdown(Strict)), mild lockdown (L(M)),
and no lockdown (L(N)). Compared to baseline contact, they,
respectively, represent a contact frequency that drops to 12%, the
ratio of contact frequency during the outbreak period (2.3 per day)
to the one at the normal time (18.8 per day) in Shanghai, to 50%
declination, and to nothing. Compared to a strict active case finding
in Zhejiang (R(S)), we considered a relatively mild one (R(M)) with
a removal period of at least three days. We also considered a
household contact tracing policy (HQ) as an improvement on case
finding. When one is confirmed, family members will be tested and
quarantined for two weeks at the same time. If a family member is
already in an exposed or infectious state, their status will be con-
firmed, and they will transfer to the removed state. Combining all
the considerations above, we set seven scenarios and their settings
of parameters are summarised in Table 1. Typically, in a real-data-
based scenario (i.e. scenario 1), the Zhejiang provincial government
conducted a top-level social distancing policy including quarantin-
ing household members of infected individuals and a strictly active
case finding.

Results

COVID-19 transmission networks

Our data of case investigation covered all reported COVID-19 cases
between 8 January and 23 February 2020 in Zhejiang, China
(Figure 4). Combining all infector–infectee pairs, we thereby got
a transmission network of all patients (Figure 4; seeData Source for
details). We found that the average out-degree for non-singletons
(i.e. cases connecting to at least one other case) was 0.72 (95%
confidence interval [CI]: 0.68, 0.76), the average shortest path
length of clusters was 1.47 (95% CI: 1.26, 1.64), the average
betweenness was 0.50 (95% CI: 0.23, 0.82), the average diameter
of clusters was 1.30 (95% CI: 1.22, 1.41), and the average size of
clusters was 3.52 (95% CI: 3.08, 4.15).

There was heterogeneity within the transmission network
(Figure 4). Individuals aged between 40 and 49 had the highest
mean out-degree (1.10, 95% CI: 0.84, 1.39) and the largest propor-
tion (44.4%, 95% CI: 36.3%, 53.3%) of being the index cases.
Individuals < 40 and ≥ 60 years of age were more likely to be
terminal cases (67.4%, 95% CI: 62.5%, 72.0%). Furthermore, the
spread between age groups suggested a majority of transmission
took place between cases belonging to the same age group (see
Figure 3). Household transmission (transmission occurring
between family members) accounted for 52.3% (95% CI: 48.1%,
56.8%) of all transmission events. In addition, 54.8% (95% CI:
50.0%, 59.7%) of transmission ended within the household
(Supplementary Material, Figure S5).

The dynamics of graphical structure across time periods

We denoted the time from 8 January to 23 January 2020 as period I,
and from 24 January to 23 February as period II (see Description of
network features for detailed explanation). Sensitivity analysis on
the uncertainty of the splitting time point is presented in the
Supplementary materials. In the main analysis, there are 776 cases
infected in 116 clusters in period I and 573 cases in 78 clusters in
period II.

There were significant changes in several network quantities
between period I and period II. The percentage of singleton net-
works increased from 38.9% (95%CI: 35.2%, 44.0%) to 62.8% (95%
CI: 58.4%, 66.6%) ðp < 0:001) between periods I and II (Figure 5),
respectively. The increase in singletons indicates the successful
implementation of active and effective control measures that dis-
rupted the transmission chains of cases, preventing them from

Table 1. Parameters’ setting for seven scenarios with various baseline contact frequency, the intensity of social distancing, and the intensity of active case finding

No.a
Baseline
social contactb

Social
distancing

Active case
finding Notesc

1 High Strong and HQ Strong Baseline contact high (C(H)) + strict lockdown (L(S)) + strong removal (R(S)) + household quarantine (HQ)

2 High Mild Mild Baseline contact high (C(H)) + mild lockdown (L(M)) + mild removal (R(M))

3 High Mild Mild and HQ Baseline contact high (C(H)) + mild lockdown (L(M)) + mild removal (R(M)) + household quarantine (HQ)

4 Low NO Mild Baseline contact low (C(L)) + no lockdown (L(N)) + mild removal (R(M))

5 Low Mild Mild Baseline contact low (C(L)) + mild lockdown (L(M)) + mild removal (R(M))

6 Low NO Mild and HQ Baseline contact low (C(L)) + no lockdown (L(N)) + mild removal (R(M)) + household quarantine (HQ)

7 Low Mild Mild and HQ Baseline contact low (C(L)) + mild lockdown (L(M)) +mild removal (R(M)) + household quarantine (HQ)

aScenario number.
bBaseline social contact frequency.
cThe period with the highest-level alert is identical across scenarios from day 17 to day 32, 16 days in total.
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infecting others. In addition, as shown in Figure 6, the average out-
degree decreased significantly from 0.75 (95%CI: 0.69, 0.80) to 0.63
(95% CI: 0.60, 0.67), p¼ 0:012, during the two time periods and so
did the average shortest path length (1.53 (95% CI: 1.26, 1.71) to
1.14 (95% CI: 1.08, 1.21), p¼ 0:0259) and the average betweenness
(0.65 (95% CI: 0.24, 1.06) to 0.11 (95% CI: 0.06, 0.16), p¼ 0:021).
Lastly, the average cluster size dropped from 4.05 (95% CI: 3.27,
5.04) in period I to 2.72 (95%CI: 2.50, 2.99) in period II ðp¼ 0:011).
Other network quantities remained consistent during the two

periods. For example, the mean diameter of clusters (1.35 (95%
CI: 1.23, 1.48) to 1.22 (95% CI, 1.13, 1.30), p¼ 0:061) remained
similar throughout the study time period. Therefore, the virus may
spread to a similar generation, but the pattern of transmission had
changed to be less extendable (Figure 1 for the hypothetical
example). From the histogram of the five graphical measures
(Supplementary Material, Figure S7), large outbreaks (clusters with
size ≥ 5) were contained and small groups started to dominate in
period II. The proportion of superspreader cases (see Methods for

Figure 3. Number of infections between age groups where the depth of colour represents the magnitude of infection number.

Figure 4. Transmission network for all cases except singletons between 8 January and 23 February 2020 and the histogram of out-degree of each node in the network. The visual
network includes nodes and connections from throughout the pandemic in Zhejiang Province and the study time period, including before and after nonpharmaceutical
interventions.
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details) dropped from 7.4% (95% CI: 5.9%, 8.6%) to 3.3% (95% CI:
1.5%, 5.6%) ðp¼ 0:013) from period I to period II.

There was marked dynamic heterogeneity of network structure
throughout the province. From period I to period II, the mean out-
degree for cases aged between 40 and 59 years largely decreased,
while among other age groups, it increased, especially for younger
cases aged between 10 to 29 years (Supplementary Material, Figure
S6(b)). The proportion of household transmission increased from
47.5% (95% CI: 41.1%, 54.7%) in period I to 65.7% (95% CI: 57.5%,
73.9%) in period II ðp¼ 0:013) (Supplementary Material, Figure S6
(c)).

The time from disease onset to confirmation showed a clear
declining trend ðp < 0:001) from periods I and II (Supplementary
Material, Figure S8). The mean number of days for case confirm-
ationwas 9.00 (standard error [SE]: 0.21) days in period I compared

with 3.94 days (SE: 0.11) ðp < 0:001) in period II. By the end of the
outbreak (after 10 February 2020), the mean days to case confirm-
ation were 1.09 days (SE: 0.14).

The dynamic associations between disease spreading and
network structure under NPIs

NPIs can have an impact on both the patterns of interpersonal
contacts and the way that disease transmits. Therefore, scenarios
under different NPIs could result in rather different infection
curves and transmission networks. Using an agent-based
susceptible-exposed–infectious-removed (SEIR) model [6, 34]
within the framework of an age-dependent transmission and
household structure (see agent-based transmission network model
for details), we first conduct a real-data-based simulation based on

Figure 5. Cases were split into seven age groups, designated by the colours shown in the legend. The size of a node reflects the number of secondary cases it induced (i.e. the
magnitude of out-degree). The colour of an edge represents the method of transmission. If transmission occurred within a household, the edge was coloured red; otherwise, the
edge was grey; (a) transmission network for cases and clusters originated in period I, before the implementation of large-scale, nonpharmaceutical interventions (23 January);
(b) transmission network for cases and clusters originated in period II, after the implementation of large-scale, nonpharmaceutical interventions (24 January).

Figure 6. Differences in social network parameters from period I and period II, before and after the implementation of large-scale, nonpharmaceutical interventions. (a) Mean out-
degree for non-singletons by period; (b) mean shortest path length by period; (c) average betweenness; (d) mean diameter of clusters by period; and (e) mean size of clusters by
period. Student’s t-test was used to compare the means across periods, and the p-values were adjusted using the Benjamini–Hochberg procedure. Confidence intervals were
estimated from cluster-based bootstrapping.
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parameters estimated from observed data or obtained from the
literature (Supplementary Material, Figure S9) that we may refer to
as the baseline scenario. The simulated infection curve closely
matched the observed data (Supplementary Material, Figure S9).
Additionally, the estimated basic reproduction number was around
2.5, which is consistent with the findings of previous studies ran-
ging from 2.6 to 3 [5, 31, 35].

Based on the baseline scenario that closely simulates the situ-
ation in Zhejiang, we further explored epidemic development and
its underlying graphical structure under various intervention scen-
arios (Table 1). We varied baseline (pre-outbreak) social contact
frequency to better represent locations with less population density.
The first three scenarios represent an area with a high baseline
contact frequency (C(H)), such as Shanghai, while the rest repre-
sent a lower contact frequency (C(L)) for a sparsely populated area.
The impact of social distancing, active case finding [36], and
household quarantine on subsequent outbreaks and graphical
measures were also estimated. Results are presented in Figures 7
and 8 in which lines with the same colours or same line styles
(e.g. solid versus dotted green line) represent scenarios that share a
similar setting (e.g. solid lines typically have a stronger NPI com-
pared with dotted lines). In particular, scenario 3 (in solid green)
adopted the household quarantine policy compared with scenario
2 (in dotted green); the intensity of social distancing raised to amild
level in scenario 5 (in solid red) versus scenario 4 (in dotted red) and
in scenario 7 (in solid blue) versus scenario 6 (in dotted blue). The
simulation results are separated into two parts, one for the devel-
opment of outbreak processes (Figure 7) and the other for the
network measures that describe the expansion of the simulated

transmission networks (Figure 8). The corresponding uncertainty
assessments, represented by confidence bands, can be found in
the Supplementary materials, specifically in Figures S10 and S11
in the Supplementary Material. From simulations, we found that
the dynamic change in network structural attributes is related to the
development of the outbreak and provides additional insights apart
from the general infection curve.

Although average out-degree is an essential measure to describe
the ability of reproduction, it is not sensitive even to large differ-
ences in population density and relatively strong control policies
(Figure 8A); there is only a relative 10% difference between scen-
arios except the real-data-based case. Moreover, compared to the
infection curve (Figure 7A) and other attributes (Figure 8B-E), the
increasing rate (i.e. gradient) of average out-degree stabilises faster
and reaches a plateau much earlier. Hence, one could have falsely
concluded that the outbreak processes start to be suppressed if only
observing the dynamic trend of average out-degree. On the con-
trary, the average size of clusters has a similar pattern as that seen in
the corresponding percentage of infection (Figure 7A versus
Figure 8E). It is alsomost sensitive to control policies. Furthermore,
the average shortest path length, average betweenness, average
diameter, and size of clusters (Figure 8B-E) can suggest the coming
of the turning point of the outbreak; when they start to stabilise, the
number of new onsets (Figure 7B) also reaches its turning point and
the effective reproduction numbers (Figure 7D) over weekly sliding
windows drop below 1. However, if they still increase with a non-
decreasing gradient (such as in scenarios 3 and 5, solid red line in
Figure 8B-E) the number of the new onsets could stay flat and never
encounter a turning point.

Figure 7. Dynamic change in measures of the outbreak under seven simulated scenarios up to 100 days: (A) percentage of infected people in the total population; (B) the daily
number of new cases that show symptoms; (C) accumulative proportion of household transmission; and (D) effective reproduction numbers over weekly sliding windows
[37]. Scenario 1 was real-data-based. C(H) and C(L) stand for high and low social contact frequency in the baseline period, respectively. L(S), L(M), and L(N) stand for strict, mild, and
no lockdown, respectively. R(S) and R(M) stand for strong and mild active case finding, while HQ stands for active household quarantine policy. Shaded areas (from days 17 to 32)
represent the period with the highest-level alert to the pandemic. The resumption of social contact rate begins from day 33 to day 63.
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For scenarios with insufficient interventions (scenarios
2 and 4), they ended up with roughly 60–70% of infections among
the total population and the transmission network stopped grow-
ing quickly due to herd immunity. For scenarios with mild inter-
ventions (scenarios 3 and 5), they began with a much slower
outbreak. However, following the resurgence in social contact
from day 33 to day 63, the growth of infections also resumed
and reached a plateau. From visual inspections, the average short-
est path length, average diameter, and size of clusters followed a
linearly increasing trend and the gradient of average betweenness
also increased (Figure 8B-E). These features suggest that the
ability of network expansion has not been suppressed. For future
containment of the virus, tailored and more stringent controlling
policies may be needed.

Discussion

Population-level COVID-19 social networks are poorly studied
but critical to understand COVID-19 transmission dynamics.
We observed heterogeneities in the transmission network of a

COVID-19 outbreak and found that its dynamics were associated
with social characteristics. Control interventions can lead to changes
in network structures, which in turn affect their effectiveness.

In this study, we presented the dynamic characteristics of
COVID-19 patient social networks among all cases diagnosed in
Zhejiang Province, China. Before the COVID-19 pandemic [7, 38,
39], previous studies using patient networks have thus far been
relatively limited to HIV and tuberculosis [40–42]. Interventions
that successfully broke down infection clusters into smaller ones
better mitigated the transmission chains but may alter the network
structures by reducing the risk for some individuals while increas-
ing it for others, such as household contacts. Upon re-simulating
patient networks using an age-dependent agent-based network
susceptible-exposed–infectious-removed (SEIR) model, our results
demonstrated an important contribution of network structure
associated with population-level COVID-19 transmission and the
dynamics of specific interventions. The methodology used is
applicable to other locations and future pandemics to understand
the influence of topological characteristics and the influence of
tailored intervention strategies.

Figure 8. (A) average out-degree for non-singletons in the network; (B) average shortest path length; (C) average betweenness; (D) average diameter of clusters; and (E) average size
of clusters; each of them on a specific day is calculated on the network up to that day. Other components in this figure remain the same as in Figure 7.
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We measured five commonly used network features, including
out-degree, shortest path length, betweenness centrality, the diam-
eter of clusters, and cluster size. Overall, the COVID-19 outbreak in
Zhejiang Province was moderate, with an average of 1.31 spreading
generations and 3.52 infection cluster sizes. Distinct from other
descriptions [7, 18, 43], large clusters in the province were uncom-
mon. After the widespread implementation of NPIs, the network in
period II was more fragmented and with significantly reduced
average out-degree, average shortest path length, betweenness cen-
trality, and cluster size, indicating that social distancing decreased
the capability of viral transmission. However, there was a limited
impact on reducing generations produced from a single index case.
With fewer network branches produced by a single case in period II
(largely due toNPIs), suppression of the population-level pandemic
was considered manageable.

Our results also suggest that social distancing alone is unlikely to
decrease social connections equally. The average number of sec-
ondary cases produced by younger populations was less impacted
between period I and period II compared with older participants
(specifically middle-aged individuals). This suggests that age-
dependent transmissibility and susceptibility were present in our
analysis and policies restricting social contact introduced hetero-
geneous effects on the population. Importantly, the proportion of
household transmissions increased in period II, suggesting add-
itional efforts were needed for household member protection.

Through simulations in seven distinct epidemiological scen-
arios, we found that network characteristics contribute useful
insights into certain aspects of the pandemic. For example, the
average size of clusters had an implication on the total scale of
the outbreak, while the average diameter of clusters may suggest the
existing expansion capability of the pandemic and the shortest path
length may unveil the potential of further expansion. Aligned with
the results observed in periods I and II, we found that out-degree
was essential to the size of the outbreak but not sensitive to
implemented interventions and stabilised much sooner than other
attributes. Therefore, it may lead to misjudgement of the further
development of the outbreak by only observing the trend of out-
degree. The model also confirmed that relaxing the intensities of
physical control and case finding could have led to severe uplift of
the scale of an outbreak and slower convergence of graphical
characteristics regardless of population density. Active case finding
(case isolation and household quarantine) reduced transmission by
suppressing new branches and blocking edges in the network.

Our study has limitations. Transmission directions within net-
works were mostly based on symptom onset. Although this method-
ology has been widely used in other studies [8, 38, 44], there is
potential for misclassification, leading to the reversal of several trans-
missionpathways.Also, some singletons could be attributed tomissed
epidemiological investigations. Network recovery approaches for
transmission networks are essential to restore lost epidemiological
connections. With more complete transmission networks, the ana-
lysis will yield deeper andmore accurate insights into the dynamics of
disease spread. In addition, we were unable to rebuild social networks
of asymptomatic cases due to a lack of symptom onset among these
patients. Our study may not accurately represent transmission
dynamics in communities with higher levels of transmission, such
as those exposed to novel variants [39, 45]. However, a description of
the social network structure and its influence on the broader epi-
demic, the primary aim of this analysis, may be useful for under-
standing dynamics in these settings. Lastly, in our data, only 9% of the
confirmed cases were marked as asymptomatic, and knowledge of
asymptomatic cases was also limited. Thus, it may not be sufficient to

study the characteristics of asymptomatic cases. Furthermore, in early
2020, transmission network data of asymptomatic cases were also
rarely reported. Evidence suggested that their transmissibility may be
lower than in symptomatic cases. The lower transmissibility but
ability of escaping case detection caused difficulties to estimate the
impact ofNPIs accurately. Our studymainly focused on symptomatic
cases, but if the asymptomatic transmission burden was indeed
higher, we expect that the scenario comparison results still hold,
but the scale of an outbreak would be bigger. Vaccination was also
unavailable during the time period of data collection, and the data
exploration and simulation in this article may not reliably describe
transmission patterns among asymptomatic or vaccinated individ-
uals. By comparing the epidemiological investigation data on novel
variants and COVID-19 transmission after vaccination, we can
uncover the graphical transmission patterns of novel variants and
the effectiveness of vaccines in network interventions.

In summary, we describe and report topological structures and
dynamic changes in COVID-19 transmission networks through a
population-based, surveillance system of all diagnosed cases in
Zhejiang Province, China. By integrating several surveillance data-
sets, the results from our agent-based network model suggest that
structural characteristics are dynamically related to COVID-19
spread at the population level. Network characteristics are import-
ant to the overall COVID-19 pandemic and have clear implications
for the impact of interventions.
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