We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure coreplatform@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Differences in individual eating habits may be influenced by genetic factors, in addition to cultural, social or environmental factors. Previous studies suggested that genetic variants within sweet taste receptor genes family were associated with sweet taste perception and the intake of sweet foods. The aim of this study was to conduct a genome-wide association study (GWAS) to find genetic variations that affect confection consumption in a Japanese population. We analysed GWAS data on confection consumption using 14 073 participants from the Japan Multi-Institutional Collaborative Cohort study. We used a semi-quantitative FFQ to estimate food intake that was validated previously. Association of the imputed variants with confection consumption was performed by linear regression analysis with adjustments for age, sex, total energy intake and principal component analysis components 1–3. Furthermore, the analysis was repeated adjusting for alcohol intake (g/d) in addition to the above-described variables. We found 418 SNP located in 12q24 that were associated with confection consumption. SNP with the ten lowest P-values were located on nine genes including at the BRAP, ACAD10 and aldehyde dehydrogenase 2 regions on 12q24.12-13. After adjustment for alcohol intake, no variant was associated with confections intake with genome-wide significance. In conclusion, we found a significant number of SNP located on 12q24 genes that were associated with confections intake before adjustment for alcohol intake. However, all of them lost statistical significance after adjustment for alcohol intake.
The Japanese second deep ice coring project was carried out at Dome Fuji, Antarctica. Following the drilling of the pilot hole in 2001, deep ice core drilling led by the Japanese Antarctic Research Expedition (JARE) was conducted over four austral summer seasons, beginning with the 2003/04 season and reached a depth of 3035.22 m near the bedrock in January 2007. The new drill was designed and developed with the goals of (1) solving the problems encountered during the first JARE deep coring drill and (2) achieving more efficient drilling. In particular, the maximum core length that can be drilled at one time was increased from 2.30 m to 3.84 m and the chip storage efficiency was enhanced by a special pipe with many small holes. This paper gives an outline of the improved drilling system, the progress of drilling and various drilling data.
We present the case of a 3-month-old boy with pulmonary arterial hypertension after corrective repair of total anomalous pulmonary venous connection. The patient developed severe pulmonary arterial hypertension with a high mean pulmonary arterial pressure of 45 mmHg. We performed continuous monitoring of pulmonary arterial pressure using a tip deflecting microcatheter in the intensive care unit. We successfully managed this patient based on real-time pulmonary arterial pressure measurements. Continuous real-time monitoring of pulmonary arterial pressure using this microcatheter enables individualized targeted therapy for infants with pulmonary arterial hypertension.
Autonomy is a key factor in the reduction of inequitable physical healthcare among people with severe mental illness compared with the general population.
Aims
To clarify the critical mechanism underlying autonomy in physical health promotion based on the perspectives of people with severe mental illness.
Method
We employed a conventional content analysis of narrative data from the Healthy Active Lives in Japan (HeAL Japan) workshop meetings.
Results
‘Inhibited autonomy’ was extracted as a central component and shaped by the users’ experiences, both in a healthcare setting and in real life. This component emerged based on the lack of an empowerment mechanism in psychiatric services.
Conclusions
A barrier to the encouragement of autonomy in physical health promotion was found in current psychiatric services. An effective strategy should be explored to foster an empowerment mechanism in psychiatric and mental health services.
Pseudapocryptes elongatus is one of the oxudercine gobies, which show varying degrees of amphibious behaviour and capacities to breathe air. There is little information on the early life history of P. elongatus, particularly of their morphology and larval habitat and duration. This study focused on the life history of larval and juvenile stages of P. elongatus investigated by genetic species identification, morphological observation and otolith analyses using specimens collected in June and October 2012 from estuaries in Bac Liêu Province, southern Vietnam (09°14′N 105°43′E). Genetically identified juvenile P. elongatus were characterized by (1) a slender body form, (2) the anterior edges of both the anal and second dorsal fins located at the midpoint along the body axis, (3) scarce chromatophores over the body surface, (4) melanophores in the parietal region between the eyes, and (5) a single row of melanophores along the base of the anal fin. Mean age at recruitment to estuaries was 38.0 ± 4.1 days, and otolith Sr/Ca ratios ranged from 8.9 to 9.9 mmol mol−1, suggesting that larval migration from their spawning sites requires more than 1 month in saline environments.
The use of pheromones to disrupt mating behaviours is perhaps the most promising method for controlling the sugarcane pest Dasylepida ishigakiensis Niijima et Kinoshita, also known as the white grub beetle. Herein, based on laboratory observations of mating, oviposition and hatching behaviours in the white grub beetle, we suggest guidelines for the timing and length of sex-pheromone release in the field. In the present study, we collected virgin female adults early in the mating season (4 February) in sugarcane fields in Okinawa, Japan and mated them in the laboratory after different time intervals with males collected at the same time. We investigated the effects of delayed mating on mating success, timing of oviposition, female longevity after mating and progeny hatchability. Mating success – defined as the proportion of mated females that produced progeny – and hatchability were not significantly affected by mating delays of less than 31 days, although further delays dramatically decreased these parameters. Female life span and the time between mating and oviposition were unaffected by mating delay. Similar results were obtained for laboratory-reared adults mated on day 45, 60 or 80 after adult emergence. Based on these findings, we propose that releasing synthetic sex pheromones between mid-January (i.e. shortly before the start of the mating season) and late March would be optimal for disrupting the mating behaviours of this beetle in the field.
Field and laboratory observations were carried out to understand the significance of prolonged copulation and the male substance transferred from males to females in the white grub beetle Dasylepida ishigakiensis Niijima & Kinoshita. Adults emerged from the soil in the evening and formed mating pairs on sugarcane plants, where copulation lasted for 1–3 h. Mating pairs (30%) observed in the field were accompanied by one or two additional males. Some females mated with one such male after ending copulation with the first male, showing multiple mating. After mating, males dropped to the ground to burrow into the soil earlier than females. Females received a large amount of colloidal secretion from males during mating. The amount and rate of transfer of this secretion from males to females were investigated in this study. Transfer of the secretion from males to females was completed within 30 min, and females that had mated with two males in the laboratory stored a larger amount of male secretion in the bursa copulatrix than those that had mated once. The results of both field and laboratory observations might indicate a possibility that prolonged copulation serves as a post-insemination female guarding behaviour to prevent mating by other conspecific males.
Sema4D/CD100 is a type of class 4 semaphorin, exhibiting crucial rôles in growth cone guidance in developing neurons. Sema4D is widely expressed throughout the central nervous system in embryonic mouse brain, and is selectively localized to oligodendrocytes and myelin in the postnatal brain. However, direct evidence of the actual involvement of Sema4D in the neuronal network development crucial for neurobehavioral performance is still lacking. The present study therefore examined whether Sema4D deficiency leads to abnormal behavioral development.
Methods:
Both wild-type and Sema4D-deficient mice were subjected to behavioral analyses including open-field, adhesive tape removal, rotarod tests and a water maze task.
Results:
Open-field tests revealed increased locomotor activity in Sema4D-deficient mice with less percentage of time spent in the center of the field. In both the adhesive tape removal and rotarod tests, which examine motor coordination and balance, Sema4D-deficient mice showed significantly superior performance, suggesting facilitated motor behavior. Both Sema4D-deficient and wild-type mice successfully learnt the water maze task, locating a hidden escape platform, and also showed precise memory for the platform position in probe tests. However, the swimming speed of Sema4D-deficient mice was significantly faster than that of wild-type mice, providing further evidence of their accelerated motor behavior.
Conclusion:
Our mouse behavioral analyses revealed enhanced motor activity in Sema4D-deficient mice, suggesting the crucial involvement of Sema4D in the neurodevelopmental processes of the central structures mediating motor behavior in mice.
The operation of nuclear fuel reprocessing plants generates a radioactive effluent containing nitrate salts as the major constituent. This waste must be disposed of safely and economically, and to achieve this aim the Japan Atomic Energy Agency (JAEA) is developing a cement based encapsulation method to immobilise this waste. Non-radioactive development work has been performed at both small and large-scale (up to 200 litres) to investigate the optimum cement formulation. The results from these studies demonstrate that nitrate waste that has been concentrated by evaporation of the water to a predetermined level can be successfully encapsulated up to a waste loading corresponding to 50 wt% sodium nitrate. It has been identified that high concentrations of bicarbonate ions in the effluent can have a detrimental effect on the strength of the cement encapsulated waste; however, provided this concentration is controlled, successful encapsulation of the effluent is still achieved.
Development work has been carried out for several years on the cementation of phosphate waste from the Tokai Reprocessing Plant Solvent Waste Treatment Facility. The phosphate waste consists of mainly NaH2PO4 at a concentration of approximately 440g/ℓ, and has a pH of approximately 4. During attempts to encapsulate this waste in cement the phosphate species interfere with the hydration reaction and retard the setting of the cement and reduce the strength of the wasteform. To mitigate these detrimental effects, pretreatment of the phosphate waste with Ca(OH)2 prior to cementation has been investigated at small scale.
The effect of pre-treating the waste with various amounts of Ca(OH)2, specified by the Ca(OH)2/ NaH2PO4 molar ratio, was investigated under a range of mixing conditions. The viscosity of the pre-treated waste simulant was recorded and an optical microscope was used to identify the presence of small crystals formed during pre-treated. Cementation of pre-treated phosphate waste simulant was also investigated using various conditions to assess the effects of changing the waste loading, mixing temperature and water/cement ratio. The dimensional stability and strength of the resulting cemented waste was assessed up to 28 days.
Results from the trials show that pre-treatment of the waste simulant with Ca(OH)2 is particularly sensitive to the Ca(OH)2/ NaH2PO4 molar ratio and mixing temperature. These two factors strongly affect the rheology of the pre-treated waste and the acceptability for subsequent cementation. An optimum Ca(OH)2/ NaH2PO4 molar ratio was found to exist and the importance of controlling the waste temperature during pre-treatment was explained.
Cementation trials were performed using the pre-treated phosphate waste simulant and slag cement. It has been shown that pre-treated phosphate waste may be encapsulated in slag cement where the wasteform achieved compressive strengths exceeding 10 MPa after 28 days curing at waste loadings exceeding 13wt% (given as a % weight of cement wasteform represented by the NaH2PO4 in the untreated waste).
Demonstration trials of pre-treatment and encapsulation will be executed at full scale in the future.
We report the preparation and thermoelectric properties of oriented higher manganese silicide (HMS) with a composition of MnSi1.73 bulk. The grain alignment and densification were achieved by rotating high magnetic field and spark plasma sintering (SPS) techniques, respectively. The easy magnetization axis of MnSi1.73 was found to be c-axis, and the applied magnetic field of 2 T was strong enough to rotate the powder with a mean grain size of 1 μm. The c-axis of grains was oriented when applying the magnetic field, and the degree of orientation was further increased after heat treatment. However, a secondary phase that was mono manganese silicide (MnSi) was observed as a result of oxidation on the surface of synthesized powder. The electrical conductivity of the c-axis oriented specimen along the ab-plane was about 40% larger than that for sample processed only by SPS, while the Seebeck coefficient of oriented and nonoriented specimens showed similar values regardless of existence of the second phase. Consequently, the power factor of the c-axis oriented specimen along the ab-plane was enhanced by about 35% compared to the nonoriented one. The proposed approach is found to be very effective not only in obtaining the oriented materials with nonductility but also in enhancing the thermoelectricity.
To identify risk factors for infection and severe illness due to Chlamydia pneumoniae.
Methods.
To identify risk factors for infection, we conducted a case-control study among nursing home residents who had onset of symptoms during December 1, 1999, to February 20, 2000. To identify risk factors for severe illness among nursing home residents, we conducted a retrospective cohort study.
Setting.
A nursing home providing long-term and day care services for elderly patients in Japan.
Participants.
Fifty-nine residents and 41 staff members of a nursing home.
Results.
The attack rates for respiratory illness were 53% (31 of 59) among residents and 22% (9 of 41) among staff. Infection was confirmed in 15 resident and 2 staff case patients by isolation of C. pneumoniae from nasal swab specimens. Fifteen resident case patients developed severe illness (ie, bronchitis, pneumonia, and hypoxia); one case patient died. The median age of resident case patients was 87 years. We could identify neither the source of the outbreak nor significant risk factors for infection and severe illness in residents. However, residents with a higher level of physical activity were more likely to become infected, whereas older residents (aged more than 85 years) and those with a lower level of physical activity were more likely to develop severe illness (P>.05). Contact with residents was a risk factor for infection in staff (relative risk, undefined; P = .04).
Conclusions.
C. pneumoniae can cause large outbreaks of infection and severe illness among elderly persons, and its transmission is likely to be enhanced by close contacts among people in nursing homes. Therefore, early detection of an outbreak by means of better surveillance, and subsequent isolation of patients, may be effective control measures.
We succeeded in fabricating c-axis (00l) oriented ZnO ceramics by using a rotating magnetic field and a subsequent sintering treatment. The degree of orientation in the green compact was about 0.5 along (00l) on the Lotgering scale. The degree of orientation increased to 0.99 after sintering at 1573 K. Particles can also be oriented in a static magnetic field, but along the direction of the a-axis or a,b-axes (h00), (hk0). These results show that selected axes can be oriented by controlling the magnetic field. Control of the crystal form in microstructures is expected to result in improvements in and better miniaturization of functional ceramics.
Negative permeability of single-ring split ring resonator (s-SRR) is theoretically investigated in the visible light frequency region [1, 2]. To estimate magnetic responses of conductive elements precisely, we determined internal impedance by considering the delay of the current inside the metal structure. The increase of the surface resistivity, which is the real part of the internal impedance, results in the decrease of the resonator's Q-value. This means the degradation of the tunable range of the permeability. The increase of the internal reactance results in the reduction of the resonant frequency. In our calculation, the surface resistivity saturates at the inherent frequency of each metal as the frequency increases. On the silver case, the saturation value is 0.4 Ω and this value is remarkably smaller than that of gold and copper. On the other hand, the internal reactance is increasing as the frequency increases independently of metal. We concluded that the internal reactance is dominant factor to realize the negative magnetic permeability in the optical frequency region. We also show the frequency dependence of the magnetic permeability of s-SRRs. In the case of s-SRRs made of copper, the minimum value of the magnetic permeability becomes positive value at 550 THz even in the high filling factor condition (11%). In the case of s-SRRs made of gold, only on the filling factor was 11%, the minimum value of the magnetic permeability takes negative value in the entire visible range. On the other hand, the silver SRR exhibits negative magnetic permeability in the visible range even under the low filling factor condition of 3%. Moreover, we concluded that reducing the geometrical capacitance and using silver for SRR are necessary to realize the negative magnetic permeability in the visible light range.
A small p-n diode array was fabricated on a polycrystalline Si substrate and the electrical characteristics were measured for each small diode to evaluate the distribution of energy conversion efficiency in the substrate. The crystal qualities in conjunction with the electrical characteristics were also evaluated. We found large variations in measuring the current-voltage (I-V) characteristics of the p-n diode. We also observed variations in quality even in diodes without any grain boundaries at the p-n junction. Therefore, we evaluated crystalline quality using various techniques to compare the diode characteristics. We found clear evidence in photo-luminescence (PL) mapping, where grains, including degraded diodes, were darker in the mapping, implying lower PL intensities than the others. The PL spectra obtained from the “dark grains” included D-lines indicating the existence of dislocations. We could conclude that the electrical characteristics of p-n diodes were not only affected by grain boundaries but also by crystalline defects evaluation such as dislocations. We observed a Secco-etched surface for crystalline defects evaluation using an optical microscope. The origins of etch pits were also determined by transmission electron microscope (TEM) and three different types of defects were confirmed.
Osteopontin (OPN) is an acidic phosphorylated glycoprotein found in many tissues and physiological fluids. Bovine OPN is a mature protein comprising 262 amino acids with a calculated molecular weight of 29 kDa. However, SDS-PAGE analysis reveals that the protein isolated from milk migrates to a molecular mass of 60 kDa (Sørensen & Petersen, 1993; Bayless et al. 1997). Bovine milk OPN is phosphorylated at 27 serine residues and one threonine residue (Sorensen et al. 1995); three O-glycosylated threonines were also identified, but no asparagine residues were glycosylated in spite of the presence of three putative N-glycosylation sites. In contrast, eight phosphates are recognized in bovine bone OPN (Salih et al. 1996), and 12 phosphoserines and one phosphothreonine are proposed in addition to five O-linked oligosaccharides and at most one N-linked oligosaccharide in the case of rat bone OPN (Prince et al. 1987). Thus, the possibility of tissue or species-specific differences in post-translational modification has been discussed.
This paper reports on a new bottom-up technique of forming silicon nanostructures based on natural aggregation of nanocrystalline (nc) -Si dots in the solution. We first study how the nc-Si dots deposited on the Si substrate get mobile in the solution by simply dipping the substrate with the nc-Si dots on into various solutions. We then demonstrate a solution droplet evaporation method that utilizes aggregation of the dots when we evaporate a solution droplet applied onto the nc-Si dots randomly deposited on the Si substrate. It is shown that the nc-Si dots are assembled well in a droplet of the hydrofluoric acid solution, resulting in various regular patterns on the substrate.