Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T06:28:55.680Z Has data issue: false hasContentIssue false

References

from Part VIII - Fundaments

Published online by Cambridge University Press:  26 October 2017

David E. Loper
Affiliation:
Florida State University
Get access
Type
Chapter
Information
Geophysical Waves and Flows
Theory and Applications in the Atmosphere, Hydrosphere and Geosphere
, pp. 495 - 498
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. J., Shockling, M. A., Kunkel, G. J. & Smits, A. J. (2007). Turbulent flow in smooth and rough pipes. Philos. T. Roy. Soc. A, 365(1852), 699–714.Google Scholar
Argus, D. F., Gordon, R. G. & DeMets, C. (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, 12(11), doi:10.1029/2011GC003751.CrossRefGoogle Scholar
Bak, P. (1996). How Nature Works: The Science of Self-organized Criticality. New York: Springer.CrossRef
Ball, F. K. (1956). The theory of strong katabatic winds. Aust. J. Phys., 9, 373–386.CrossRef
Bascom, W. (1964). Waves and Beaches. Garden City, New York: Doubleday.
Batchelor, G. K. (1972). Sedimentation in a dilute dispersion of spheres. J. Fluid Mech., 52(2), 245–268.CrossRefGoogle Scholar
Borch, R. S. & Green, H, W. II (1987). Dependence of creep in olivine on homologous temperature and its implications for flow in the mantle. Nature, 330, 345–348.CrossRefGoogle Scholar
Chow, V. T. (1985). Open Channel Hydraulics. New York: McGraw–Hill.
Čížková, H., van den Berg, A. P., Spakman, W. & Matyska, C. (2012). The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere. Phys. Earth Planet In., 200–201, 56–62; doi:10.1016/j.pepi.2012.02.010.CrossRef
Clement, A. C. & Peterson, L. C. (2008). Mechanisms of abrupt climate change of the last glacial period. Rev. Geophys, 46(4), doi:10.1029/2006RG000204.CrossRefGoogle Scholar
Courtillot, V. & Renne, P. R. (2003). On the ages of flood basalt events. C. R. Geosciences, 335(1), 113–140.CrossRefGoogle Scholar
Cullen, S. (2005). Trees and wind: a practical consideration of the drag equation velocity exponent for urban tree risk management. J. Arboriculture, 31(3), 101–113.Google Scholar
Davaille, A. & Limare, A. (2009). Laboratory studies of mantle convection. Vol. VII of Treatise on Geophysics, Amsterdam: Elsevier.
Davies, G. F. & Richards, M. A. (1992). Mantle convection. J. Geol, 100(2), 151–206.CrossRefGoogle Scholar
Davison, A. (1956).My Ship Is So Small. New York: William Sloan Associates.
de Koker, N. & Stixrude, L. (2009). Self-consistent thermodynamic description of silicate liquids, with application to the shock melting of MgO periclase and MgSiO3 perovskite. Geophys. J. Int., 178(1), 162–179.CrossRefGoogle Scholar
de Rooy, W. C., Bechtold, P., Fröhlic, K., Hohenegger, C., Jonker, H., Mironov, D., Siebsema, A. P., Teixeira, J. & Yano, J.-I. (2013). Entrainment and detrainment in cumulus convection: an overview. Q. J. Roy. Meteor. Soc., 139(670), 1–19.CrossRefGoogle Scholar
Dettman, J. W. (1969). Mathematical Methods in Physics and Engineering. New York: McGraw–Hill.
Drazin, P. G. & Reid, W. H. (1981). Hydrodynamic Stability. Cambridge University Press.
Dukhovskoy, D.M. & Morey, S. L. (2010). Simulation of the Hurricane Dennis storm surge and considerations of vertical resolution. Natural Hazards, doi:10.1007/s11069-010- 9684-5.CrossRef
Dye, S. T. (2012). Geoneutrinos and the radioactive power of the Earth. Rev. Geophys., 50(3), doi:10.1029/2012RG000400.CrossRefGoogle Scholar
Dyer, K. R. & Soulsby, R. L. (1988). Sand transport on the continental shelf. Annu. Rev. Fluid Mech., 20, 295–324.CrossRefGoogle Scholar
Dziewonski, A. & Anderson, D. L. (1981), Preliminary reference Earth model. Phys. Earth Planet. In., 25, 297–356.Google Scholar
Ellison, T. H. (1956). Atmospheric turbulence. In G.K., Batchelor & R. M., Davies, eds., Surveys in Mechanics. Cambridge University Press, pp. 400–430.
Emanuel, K. A. (1986). An air-sea interaction theory for tropical cyclones. Part I. J. Atmos. Sci., 43, 585–604.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. (1991). The theory of hurricanes. Annu. Rev. Fluid Mech., 23, 179–196.CrossRefGoogle Scholar
Forsythe, A. R. (1959). Theory of Differential Equations, 6th edn. New York: Dover Publications.
Furlong, K. P. & Chapman, D. S. (2013). Heat flow, heat generation and the thermal state of the lithosphere. Annu. Rev. Earth Pl. Sc., 41, 385–410.CrossRefGoogle Scholar
Griffiths, R. W. (2000). The dynamics of lava flows. Annu. Rev. Fluid Mech., 32, 477–518.CrossRefGoogle Scholar
Guazzelli, É. & Hinch, J. (2011). Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech., 43, 97–116.CrossRefGoogle Scholar
Havelock, T. H. (1908). The propagation of groups of waves in dispersive media, with applications to waves on water produced by a travelling disturbance. P. Roy. Soc. Lond. A Mat., 81(549), 398–430.CrossRefGoogle Scholar
Hellerman, S. & Rosenstein, M. (1983). Normal monthly wind stress over the world ocean with error-estimates. J. Phys. Oceanogr., 13, 1093–1104.2.0.CO;2>CrossRefGoogle Scholar
Hodgkinson, J. H. & Stacey, F. D. (2017). A Practical Handbook of Earth Science. CRC Press.
Holton, J. R. (2004). An Introduction to Dynamic Meteorology. Burlington, MA: Elsevier Academic Press.
Hon, K., Kauahikaua, J., Denlinger, R. & MacKay, K. (1994). Emplacement and inflation of pahoepahoe sheet flows: Observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull., 106(3), 351–370.2.3.CO;2>CrossRefGoogle Scholar
Jaupart, C., Labrosse, S., Lucazeau, F. & Mareschal, J.-C. (2015). Temperatures, heat, and energy in the mantle of the Earth. In G., Schubert, ed., Treatise on Geophysics, 2nd edn, vol. 7. Oxford: Elsevier, pp. 223–270.CrossRef
Jones, M. D. & Savino, J. M. (2015). Supervolcano: The Catastrophic Event that Changed the Course of Human History. Pronoun.
King, S. D. (2016). Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. J. Geodyn., 100, 33–50.CrossRefGoogle Scholar
Lansing, A. (1959). Endurance: Shackleton's Incredible Voyage. New York: McGraw–Hill.
Lay, T., Hernlund, J. & Buffett, B. A. (2008). Core–mantle boundary heat flow. Nat. Geosci., 1, 25–32.CrossRefGoogle Scholar
Lewellen, W. S. (1993). The tornado: its structure, dynamics, prediction and hazards. Vol. 79 of Geophysical Monograph Series. American Geophysical Union.
Li, D., Katul, G. G. & Zilininkevich, S. J. (2015). Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer. J. Atmos. Sci., 72, 2394–2401. doi:10.1175/JAS-D-14-0335.1.CrossRefGoogle Scholar
Liu, J., Song, M., Hu, Y. & Ren, X. (2012). Changes in the strength and width of the Hadley circulation since 1871. Clim. Past., 8, 1169–1157.CrossRefGoogle Scholar
Loper, D. E. (1991). The nature and consequences of thermal interactions twixt core and mantle. J. Geomagn. Geoelectr., 43(2), 79–91.CrossRefGoogle Scholar
Loper, D. E. (2009). Earth's habitable loop: water, atmospheric structure, the geomagnetic field and plate tectonics. Acta Geod. Geophys. Hu., 44, 265–269. doi:10.1556/AGeod. 44.2009.3.2.CrossRefGoogle Scholar
Loper, D. E. & Lay, T. (1995). The core–mantle boundary region. J. Geophys. Res. – Sol. Ea., 100(B4), 6397–6420.CrossRefGoogle Scholar
Løvholt, F., Kaiser, G., Glimsdal, S., Scheele, L., Harbitz, C. B. & Pedersen, G. (2012). Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami. Nat. Hazards Earth Syst. Sci., 12, 1017–28.CrossRefGoogle Scholar
Madsen, O. S. (1976). A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr., 7, 248–255.2.0.CO;2>CrossRefGoogle Scholar
Mason, B., Pyle, D. M. & Oppenheimer, C. (2004). The size and frequency of the largest explosive eruptions on Earth. B. Volcanol., 66(8), 735–748.CrossRefGoogle Scholar
Mastin, L. G. & M., Ghiorso, S. (2000). A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits (vers. 1.05b, April 2008): U.S. Geological Survey Open-File Report 00-209. https://pubs.usgs.gov/of/2000/0209/.
Morey, S. L., Baig, S., Bourassa, M. A., Dukhovskoy, D. S. & O'Brien, J. J. (2006). Remote forcing contribution to storm-induced sea level rise during Hurricane Dennis. Geophys. Res. Lett., 33(19), L19603. doi:10.1029/2006GL027021CrossRefGoogle Scholar
Murphy, G. M. (1960). Ordinary Differential Equations and Their Solutions. Princeton: Van Nostrand.
Ni, H., Hui, H. & Steinle-Newmann, G. (2015). Transport properties of silicate melts. Rev. Geophys., doi:10.1002/2015RG000485.CrossRef
Olson, P. (2016). Mantle control of the geodynamo: Consequences of top-down regulation. Geochem. Geophys. Geosy., 17, 1935–1956, doi:10.1002/ 2016GC006334.Google Scholar
Olver, F. J. W., Lozer, D. W., Boisvert, R. F. & Clark, C. W. (2010). NIST Handbook of Mathematical Functions. Cambridge University Press. http://dlmf.nist.gov.
Parish, T. R. (1988). Surface winds over the Antarctic continent: a review. Rev. Geophys., 26, 169–180.CrossRefGoogle Scholar
Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. (2013). Why do mafic arc magma contain 4 wt% water on average? Earth Planet. Sc. Lett., 364, 168–179.Google Scholar
Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. (2012). Thermal and electrical conductivity of iron at Earth's core conditions. Nature, 485, 355–360.CrossRefGoogle Scholar
Putirka, K. D., Perfit, M., Reynolds, F. J. & Jackson, M. G. (2007). Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol., 214(3–4), 177–206 doi:10.1016/j.chemgeo.2007.01.014.CrossRefGoogle Scholar
Rahmstorf, S. (2003). Timing of abrupt climate change: a precise clock. Geophys. Res. Lett., 30(10). doi:10.1029/2003GL017115.CrossRefGoogle Scholar
Rahmstorf, S. (2006). Thermohaline ocean circulation. In S. A., Elias, ed., Encyclopedia of Quaternary Sciences. Amsterdam: Elsevier.
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford, S. & Schaffernicht, E. J. (2015). Exceptional twentieth-century slowdown in atlantic ocean overturning circulation. Nature Climate Change, 5(5), 475–480. doi:http://dx.doi.org/10.1038/nclimate2554.CrossRefGoogle Scholar
Richards, M. A., Duncan, R. A. & Courtillot, V. E. (1989). Flood basalts and hot-spot tracks: plume heads and tails. Science, 246, 103–107.CrossRefGoogle Scholar
Roberts, G. O. (1979). Fast viscous Bénard convection. Geophys. Astro. Fluid, 12(1), 235–272.CrossRefGoogle Scholar
Robock, A., (2000). Volcanic eruptions and climate. Rev. Geophys., 38(2), 191–219.CrossRefGoogle Scholar
Schlichting, H. (1968). Boundary Layer Theory, 6th edn. New York: McGraw–Hill.
Schmittner, A., Chiang, J. C. H. & Hemming, S. R. (eds.) (2007). Ocean Circulation: Mechanisms and Impacts – Past and Future Changes of Meridional Overturning. Vol. 173 of Geophysical Monograph Series. doi:10.1029/GM173.CrossRef
Shockling, M. A., Allen, J. J. & Smits, A. J. (2006). Roughness effects in turbulent pipe flow. J. Fluid Mech., 564, 267–285.CrossRefGoogle Scholar
Sellin, R. J. H. (1969). Flow in Channels. London: Macmillan.
Shearer, P. M. (2009). Introduction to Seismology, 2nd edn. Cambridge University Press.
Smith, S. D. (1980). Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709–726.2.0.CO;2>CrossRefGoogle Scholar
Sovilla, B., McElwaine, J. N. & Loug, M. Y. (2015). The structure of powder snow avalanches. Comptes Rendus Physique, 16(1), 97–104.CrossRefGoogle Scholar
Stacey, F. D. (1991). Effects on the core of structure within D. Geophys. Astro. Fluid, 60, 157–163.CrossRefGoogle Scholar
Stacey, F. D. (2010). Thermodynamics of the Earth. Rep. Prog. Phys., 73(4). doi:10.1088/00 34-4885/73/4/046801.CrossRefGoogle Scholar
Stacey, F. D. & Davis, P. M. (2008). Physics of the Earth, 4th edn. Cambridge University Press.
Stacey, F. D. & Loper, D. E. (2007). A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance. Phys. Earth Planet. In., 161(1–2), 13–18.CrossRefGoogle Scholar
Stommel, H. (1947). Entrainment of air into a cumulus cloud. J. Meteorology, 4, 91–94.2.0.CO;2>CrossRefGoogle Scholar
Stommel, H. (1961). Thermohaline convection with two stable regimes of flow. Tellus, 13(2), 224–230.CrossRefGoogle Scholar
Storchak, D. A., Schweitzer, J. & Bormann, P. (2003). The IASPEI Seismic Phase List. Seismological Res. Lett., 74(6), 761–772.CrossRefGoogle Scholar
Sverdrup, H. U. (1947).Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA, 33(11), 318–326.CrossRefGoogle Scholar
Tozer, D. C. (1972). The present thermal state of the terrestrial planets. Phys. Earth Planet. In., 6(1–3), 182–197.CrossRefGoogle Scholar
Vilajosana, I., Khazardze, G., Surñach, E., Lied, E. & Kristensen, K. (2007). Snow avalanche speed determination using seismic methods. Cold Reg. Sci. Technol., 49(1), 2–10.CrossRefGoogle Scholar
Wallace, P. J., Planck, T., Edmonds, M. & Hauri, E. H. (2015). Volatiles in Magmas. In H., Sigurdsson, B., Holton, S., McNutt, H., Rymer & J., Stix, eds., The Encyclopedia of Volcanoes. Academic Press, pp. 163–183.CrossRef
Williams, H. & McBirney, A. R. (1979). Volcanology. San Francisco: Freeman, Cooper and Co.
Yalin, M. S. (1992). River Mechanics. Oxford: Pergamon Press.
Zhang, Y., Xu, Z., Zhu, M. & Wang, H. (2007). Silicate melt properties and volcanic eruptions. Rev. Geophys., 45(4), doi:10.1029/2006RG000216.CrossRefGoogle Scholar
Zwillinger, D. (1998). Handbook of Differential Equations, 3rd edn. Academic Press.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • David E. Loper, Florida State University
  • Book: Geophysical Waves and Flows
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316888858.052
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • David E. Loper, Florida State University
  • Book: Geophysical Waves and Flows
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316888858.052
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • David E. Loper, Florida State University
  • Book: Geophysical Waves and Flows
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316888858.052
Available formats
×