Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T07:32:38.971Z Has data issue: false hasContentIssue false

21 - Vortices in Resonant Polariton Condensates in Semiconductor Microcavities

from Part IV - Condensates in Condensed Matter Physics

Published online by Cambridge University Press:  18 May 2017

D. N. Krizhanovskii
Affiliation:
University of Sheffield
K. Guda
Affiliation:
University of Sheffield
M. Sich
Affiliation:
University of Sheffield
M. S. Skolnick
Affiliation:
University of Sheffield
L. Dominici
Affiliation:
Istituto di Nanotecnologia (NANOTEC) - Consiglio Nazionale delle Ricerche (CNR)
D. Sanvitto
Affiliation:
Istituto di Nanotecnologia (NANOTEC) - Consiglio Nazionale delle Ricerche (CNR)
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Timofeev, V., and Sanvitto, D. 2012. Exciton Polariton in Microcavities: New Frontiers, Springer Series in Solid-State. Berlin, Germany: Springer.
[2] Kavokin, A., Baumberg, J., Malpuech, G., and Laussy, F. Microcavities. Oxford, UK: Oxford University Press.
[3] Wouters, M., and Carusotto, I. 2007. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. Phys. Rev. Lett., 99, 140402.Google Scholar
[4] Stevenson, R. M., Astratov, V. N., Skolnick, M. S., Whittaker, D. M., Emam- Ismail, M., Tartakovskii, A. I., Savvidis, P. G., Baumberg, J., and Roberts, J. S. 2000. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett., 85, 3680–3683.Google Scholar
[5] Tartakovskii, A. I., Krizhanovskii, D. N., and Kulakovskii, V. D. 2000. Polariton polariton scattering in semiconductor microcavities: distinctive features and similarities to the three-dimensional case. Phys. Rev. B, 62, R13298–R13301.CrossRefGoogle Scholar
[6] Wouters, M., and Carusotto, I. 2007. Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime. Phys. Rev. A, 76, 043807.Google Scholar
[7] Cross, M. C., and Hohenberg, P. C. 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65, 851–1112.Google Scholar
[8] Sigurdsson, H., Egorov, O. A., Ma, X., Shelykh, I. A., and Liew, T. C. H. 2014. Information processing with topologically protected vortex memories in excitonpolariton condensates. Phys. Rev. B, 90, 014504.Google Scholar
[9] Matthews, M. R., Anderson, B. P., Haljan, P. C., Hall, D. S., Wieman, C. E., and Cornell, E. A. 1999. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett., 83, 2498–2501.Google Scholar
[10] Vinen, W. F. 1961. The detection of single quanta of circulation in liquid helium II. Proc. R. Soc. Lond, 260, 218.Google Scholar
[11] Scheuer, J., and Orenstein, M. 1999. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities. Science, 285, 230–233.CrossRefGoogle Scholar
[12] Lagoudakis, K. G., Wouters, M., Richard, M., Baas, A., Carusotto, I., Andre, R., Dang, L. S., and Deveaud-Pledran, B. 2008. Quantized vortices in an exciton-polariton condensate. Nat. Phys., 4, 706.Google Scholar
[13] Lagoudakis, K. G., Ostatnický, T., Kavokin, A.V., Rubo, Y. G., André, R., and Deveaud-Plédran, B. 2009. Observation of half-quantum vortices in an excitonpolariton condensate. Science, 326, 974–976.Google Scholar
[14] Sich, M., Krizhanovskii, D. N., Skolnick, M. S., Gorbach, A. V., Hartley, R., Skryabin, D. V., Cerda-Méndez, E. A., Biermann, K., Hey, R., and Santos, P. V. 2012. Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photonics, 6, 50–55.Google Scholar
[15] Sich, M., Fras, F., Chana, J. K., Skolnick, M. S., Krizhanovskii, D. N., Gorbach, A. V., Hartley, R., Skryabin, D. V., Gavrilov, S. S., Cerda-Méndez, E. A., Biermann, K., Hey, R., and Santos, P. V. 2014. Effects of spin-dependent interactions on polarization of bright polariton solitons. Phys. Rev. Lett., 112, 046403.Google Scholar
[16] Nardin, G., Grosso, G., Leger, Y., Petka, B., Morier-Genoud, F., and Deveaud-Plédran, B. 2011. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys., 7, 635.Google Scholar
[17] Amo, A., Pigeon, S., Sanvitto, D., Sala, V. G., Hivet, R., Carusotto, I., Pisanello, F., Leménager, G., Houdré, R., Giacobino, E., Ciuti, C., and Bramati, A. 2011. Polariton superfluids reveal quantum hydrodynamic solitons. Science, 332, 1167–1170.Google Scholar
[18] Krizhanovskii, D. N., Whittaker, D. M., Bradley, R. A., Guda, K., Sarkar, D., Sanvitto, D., Vina, L., Cerda, E., Santos, P., Biermann, K., Hey, R., and Skolnick, M. S. 2010. Effect of interactions on vortices in a nonequilibrium polariton condensate. Phys. Rev. Lett., 104, 126402.Google Scholar
[19] Guda, K., Sich, M., Sarkar, D., Walker, P. M., Durska, M., Bradley, R. A., Whittaker, D. M., Skolnick, M. S., Cerda-Méndez, E. A., Santos, P. V., Biermann, K., Hey, R., and Krizhanovskii, D. N. 2013. Spontaneous vortices in optically shaped potential profiles in semiconductor microcavities. Phys. Rev. B, 87, 081309.Google Scholar
[20] Antón, C., Tosi, G., Martîn, M. D., Viña, L., Lemaître, A., and Bloch, J. 2012. Role of supercurrents on vortices formation in polariton condensates. Opt. Express, 20, 16366.Google Scholar
[21] Dreismann, Alexander, Cristofolini, Peter, Balili, Ryan, Christmann, Gabriel, Pinsker, Florian, Berloff, Natasha G., Hatzopoulos, Zacharias, Savvidis, Pavlos G., and Baumberg remy J. 2014. Coupled counterrotating polariton condensates in optically defined annular potentials. Proc. Natl. Acad. Sci., 111, 8770–8775.Google Scholar
[22] Dominici, Lorenzo, Dagvadorj, Galbadrakh, Fellows, Jonathan M., Ballarini, Dario, De Giorgi, Milena, Marchetti, Francesca M., Piccirillo, Bruno, Marrucci, Lorenzo, Bramati, Alberto, Gigli, Giuseppe, Szymańska, Marzena H., and Sanvitto, Daniele. 2015. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Science Advances, 1, E1500807.Google Scholar
[23] D'Ambrosio, Vincenzo, Baccari, Flavio, Slussarenko, Sergei, Marrucci, Lorenzo, and Sciarrino, Fabio. 2015. Arbitrary, direct and deterministic manipulation of vector beams via electrically-tuned q-plates. Sci. Rep., 5, 7840.Google Scholar
[24] Cardano, Filippo, Karimi, Ebrahim, Marrucci, Lorenzo, de Lisio, Corrado, and Santamato, Enrico. Generation and dynamics of optical beams with polarization singularities. Opt. Express, 21, 8815–8820.
[25] Dominici, L., Colas, D., Donati, S., Cuartas, J. P., Restrepo, Giorgi, M. De, Ballarini D., Guirales, G., Carreño, J. C., Lopez, Bramati, A., Gigli, G., del Valle, E., Laussy, F. P., and Sanvitto, D. 2014. Ultrafast control and Rabi oscillations of polaritons. Phys. Rev. Lett, 113, 226401.Google Scholar
[26] Manni, F, Lagoudakis, K. G., and Liew, T. C. H. 2012. Dissociation dynamics of singly charged vortices into half-quantum vortex pairs. Nat. Commun., 3, 1309.Google Scholar
[27] Manni, F., Léger, Y., Rubo, Y. G., André, R., and Deveaud, B. 2013. Hyperbolic spin vortices and textures in exciton-polariton condensates. Nat. Commun., 4, 2590.Google Scholar
[28] Toledo-Solano, M., Mora-Ramos, M. E., Figueroa, A., and Rubo, Y. G. 2014.Warping and interactions of vortices in exciton-polariton condensates. Phys. Rev. B, 89, 035308.Google Scholar
[29] Lagoudakis, K. G., Manni, F., Pietka, B., Wouters, M., Liew, T. C. H., Savona, V., Kavokin, A.V., André, R., and Deveaud-Plédran, B. 2011. Probing the dynamics of spontaneous quantum vortices in polariton superfluids. Phys. Rev. Lett., 106, 115301.Google Scholar
[30] Liu, G., Snoke, D. W., Daley, A., Pfeiffer, L. N., and West, K. 2015. A new type of half-quantum circulation in a macroscopic polariton spinor ring condensate. Proc. Natl. Acad. Sci., 112, 2676–2681.Google Scholar
[31] Roumpos, Georgios, Fraser, Michael D., Loffler, Andreas, Hofling, Sven, Forchel, Alfred, and Yamamoto, Yoshihisa. 2011. Single vortex–antivortex pair in an excitonpolariton condensate. Nat. Phys., 7, 129–133.Google Scholar
[32] Manni, F., Liew, T. C. H., Lagoudakis, K. G., Ouellet-Plamondon, C., André, R., Savona, V., and Deveaud, B. 2013. Spontaneous self-ordered states of vortex– antivortex pairs in a polariton condensate. Phys. Rev. B, 88, 201303.Google Scholar
[33] Tosi, G., Christmann, G., Berloff, N. G., Tsotsis, P., Gao, T., Hatzopoulos, Z., Savvidis, P. G., and Baumberg, J. 2012. Geometrically locked–vortex lattices in semiconductor quantum fluids. Nat. Commun., 3, 1243.Google Scholar
[34] Dall, Robert, Fraser, Michael D., Desyatnikov, Anton S., Li, Guangyao, Brodbeck, Sebastian, Kamp, Martin, Schneider, Christian, Höfling, Sven, and Ostrovskaya, Elena A. 2014. Creation of orbital angular momentum states with chiral polaritonic lenses. Phys. Rev. Lett., 113, 200404.Google Scholar
[35] Nitsche, W. H., Kim, Na Y., Roumpos, G., Schneider, C., Kamp, M., Höfling, S., Forchel, A., and Yamamoto, Y. 2014. Algebraic order and the Berezinskii-Kosterlitz- Thouless transition in an exciton-polariton gas. Phys. Rev. B, 90, 205430.Google Scholar
[36] Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U., and Mahrt, R. F. 2014. Roomtemperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. Nat. Mater., 13, 247–252.Google Scholar
[37] Daskalakis, K. S., Maier, S. A., and Kéna-Cohen, S. 2015. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett., 115, 035301.Google Scholar
[38] Tinkler, L., Walker, P. M., Clarke, E., Krizhanovskii, D. N., Bastiman, F., Durska, M., and Skolnick, M. S. 2015. Design and characterization of high optical quality InGaAs/GaAs/AlGaAs-based polariton microcavities. Appl. Phys. Lett., 106, 021109.Google Scholar
[39] Love, A. P. D., Krizhanovskii, D. N., Whittaker, D. M., Bouchekioua, R., Sanvitto, D., Rizeiqi, S. Al Bradley, R., Skolnick, M. S., Eastham, P.R., André, R., and Dang, Le Si. 2008. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett., 101, 067404.Google Scholar
[40] Krizhanovskii, D. N., Sanvitto, D., Love, A. P. D., Skolnick, M. S., Whittaker, D. M., and Roberts, J. S. 2006. Dominant effect of polariton–polariton interactions on the coherence of the microcavity optical parametric oscillator. Phys. Rev. Lett., 97, 097402.Google Scholar
[41] Sanvitto, D., Marchetti, F. M., Szymaska, M. H., Tosi, G., Baudisch, M., Laussy, F. P., Krizhanovskii, D. N., Skolnick, M. S., Marrucci, L., Lemaitre, A., Bloch, J., Tejedor, C., and Vina, L. 2010. Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys., 6, 527533.Google Scholar
[42] Wouters, M., and Carusotto, I. 2010. Superfluidity and critical velocities in nonequilibrium Bose-Einstein condensates. Phys. Rev. Lett., 105, 020602.Google Scholar
[43] Martinelli, M., Huguenin, J. A. O., Nussenzveig, P., and Khoury, A. Z. 2004. Orbital angular momentum exchange in an optical parametric oscillator. Phys. Rev. A, 70, 013812.Google Scholar
[44] Pitaevskii, L. P., and Stringari, S. 2003. Bose–Einstein Condensation. Oxford, UK: Clarendon Press.
[45] Manni, F., Lagoudakis, K. G., Liew, T. C. H., André, R., and Deveaud-Plédran, B. 2011. Spontaneous pattern formation in a polariton condensate. Phys. Rev. Lett., 107, 106401.Google Scholar
[46] Ostrovskaya, E. A., Abdullaev, J., Desyatnikov, A. S., Fraser, M. D., and Kivshar, Y. S. 2012. Dissipative solitons and vortices in polariton Bose-Einstein condensates. Phys. Rev. A, 86, 013636.Google Scholar
[47] Tosi, G., Marchetti, F. M., Sanvitto, D., Anton, C., Szymanska, M. H., Berceanu, A., Tejedor, C., Marrucci, L., Lemaitre, A., Bloch, J., and Vina, L. 2011. Onset and dynamics of vortex–antivortex pairs in polariton optical parametric oscillator superfluids. Phys. Rev. Lett., 107, 036401.Google Scholar
[48] Liew, T. C. H., Rubo, Yuri G., and Kavokin, A.V. 2008. Generation and dynamics of vortex lattices in coherent exciton-polariton fields. Phys. Rev. Lett., 101, 187401.Google Scholar
[49] Gorbach, A. V., Hartley, R., and Skryabin, D. V. 2010. Vortex lattices in coherently pumped polariton microcavities. Phys. Rev. Lett., 104, 213903.Google Scholar
[50] Hivet, R., Cancellieri, E., Boulier, T., Ballarini, D., Sanvitto, D., Marchetti, F. M., Szymanska, M. H., Ciuti, C., Giacobino, E., and Bramati, A. 2014. Interaction-shaped vortex–antivortex lattices in polariton fluids. Phys. Rev. B, 89, 134501.Google Scholar
[51] Boulier, T., Terças, H., Solnyshkov, D. D., Glorieux, Q., Giacobino, E., Malpuech, G., and Bramati, A. 2015. Vortex chain in a resonantly pumped polariton superfluid. Sci. Rep., 5, 9230.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×