Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T03:20:39.677Z Has data issue: false hasContentIssue false

26 - Spintronics and Magnon Bose-Einstein Condensation

from Part IV - Condensates in Condensed Matter Physics

Published online by Cambridge University Press:  18 May 2017

R. A. Duine
Affiliation:
Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena
A. Brataas
Affiliation:
Department of Physics, Norwegian University of Science and Technology
S. A. Bender
Affiliation:
University of California
Y. Tserkovnyak
Affiliation:
University of California
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bardeen, J., Cooper, L. N., and Schrieffer, J. R. 1957. Microscopic theory of superconductivity. Phys. Rev., 106, 162–164.Google Scholar
[2] Pethick, C. J., and Smith, H. 2002. Bose-Einstein Condensation in Dilute Gases. Cambridge, UK: Cambridge University Press.
[3] Klaers, Jan, Schmitt, Julian, Vewinger, Frank, and Weitz, Martin. 2010. Bose-Einstein condensation of photons in an optical microcavity. Nature, 468, 545–548.Google Scholar
[4] Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L., and West, K. 2007. Bose-Einstein condensation of microcavity polaritons in a trap. Science, 316, 1007–1010.Google Scholar
[5] Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J. M. J., Marchetti, F. M., Szymanska, M. H., André, R., Staehli, J. L., Savona, V., Littlewood, P. B., Deveaud, B., and Dang, Le Si. 2010. Bose-Einstein condensation of exciton polaritons. Nature, 443, 409–414.Google Scholar
[6] Nikuni, T., Oshikawa, M., Oosawa, A., and Tanaka, H. 2000. Bose-Einstein condensation of dilute magnons in TlCuCl3. Phys. Rev. Lett., 84, 5868–5871.Google Scholar
[7] Rüegg, Ch., Cavadini, N., Furrer, A., Güdel, H.-U., Krämer, K., Mutka, H., Wildes, A., Habicht, K., and Vorderwisch, P. 2003. Bose-Einstein condensation of the triplet states in the magnetic insulator TlCuCl3. Nature, 423, 62–65.Google Scholar
[8] Demokritov, S. O., Demidov, V. E., Dzyapko, O., Melkov, G. A., Serga, A. A., Hillebrands, B., and Slavin, A. N. 2006. Bose-Einstein condensation of quasiequilibrium magnons at room temperature under pumping. Nature, 443, 430–433.Google Scholar
[9] Serga, A. A., Tiberkevich, V. S., Sandweg, C. W., Vasyuchka, V. I., Bozhko, D. A., Chumak, A. V., Neumann, T., Obry, B., Melkov, G. A., Slavin, A. N., and Hillebrands, B. 2014. Bose-Einstein condensation in an ultra-hot gas of pumped magnons. Nature communications, 5, 3452.Google Scholar
[10] Weiler, M., Althammer, M., Schreier, M., Lotze, J., Pernpeintner, M., Meyer, S., Huebl, H., Gross, R., Kamra, A., Xiao, J., Chen, Y.-T., Jiao, H., Bauer, G. E. W., and Goennenwein, S. T. B. 2013. Experimental test of the spin mixing interface conductivity concept. Phys. Rev. Lett., 111, 176601.Google Scholar
[11] Tserkovnyak, Y., Brataas, A., and Bauer, G. E. W. 2002. Spin pumping and magnetization dynamics in metallic multilayers. Phys. Rev. B, 66, 224403.Google Scholar
[12] Jia, X., Liu, K., Xia, K., and Bauer, G. E. W. 2011. Spin transfer torque on magnetic insulators. Europhys. Lett., 96, 17005.Google Scholar
[13] Burrowes, C., Heinrich, B., Kardasz, B., Montoya, E. A., Girt, E., Sun, Yiyan, Song, Young-Yeal, and Wu, Mingzhong. 2012. Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl. Phys. Lett., 100, 092403.Google Scholar
[14] Bender, S. A., Duine, R. A., Brataas, A., and Tserkovnyak, Y. 2014. Dynamic phase diagram of dc-pumped magnon condensates. Phys. Rev. B, 90, 094409.Google Scholar
[15] Bender, S. A., Duine, R. A., and Tserkovnyak, Y. 2012. Electronic pumping of quasiequilibrium Bose-Einstein-condensed magnons. Phys. Rev. Lett., 108, 246601.Google Scholar
[16] Tserkovnyak, Y., Brataas, A., Bauer, G. E. W., and Halperin, B. I. 2005. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys., 77, 1375–1421.Google Scholar
[17] Brataas, A., Kent, A. D., and Ohno, H. 2012. Current-induced torques in magnetic materials. Nature Mat., 11, 372–381.Google Scholar
[18] Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G. E. W., Maekawa, S., and Saitoh, E. 2010. Spin Seebeck insulator. Nature Mat., 9, 894–897.Google Scholar
[19] Jaworski, C. M., Yang, J., Mack, S., Awschalom, D. D., Myers, R. C., and Heremans, J. P. 2011. Spin-Seebeck effect: a phonon driven spin distribution. Phys. Rev. Lett., 106, 186601.Google Scholar
[20] Flipse, J., Dejene, F. K., Wagenaar, D., Bauer, G. E. W., Youssef J., Ben, and van Wees, B. J. 2014. Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett., 113, 027601.Google Scholar
[21] Bauer, G. E. W., Saitoh, E., and vanWees, B. J. 2012. Spin caloritronics. Nature Mat., 11, 391–399.Google Scholar
[22] D'yakonov, M. I., and Perel', V. I. 1971. Possibility of orienting electron spins with current. Sov. Phys. JETP, 13, 467–469.Google Scholar
[23] Saitoh, E., Ueda, M., Miyajima, H., and Tatara, G. 2006. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Applied Physics Letters, 88, 182589.Google Scholar
[24] Liu, L., Buhrman, R. A., and Ralph, D. C. 2011. Review and analysis of measurements of the spin Hall effect in platinum. arXiv:1111.3702. Nov.
[25] Xiao, J., Bauer, G. E. W., Uchida, K.-C., Saitoh, E., and Maekawa, S. 2010. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B, 81, 214418.Google Scholar
[26] Schreier, M., Kamra, A., Weiler, M., Xiao, J., Bauer, G. E. W., Gross, R., and Goennenwein, S. T. B. 2013. Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures. Phys. Rev. B, 88, 094410.Google Scholar
[27] Sinova, J., Culcer, D., Niu, Q., Sinitsyn, N. A., Jungwirth, T., and MacDonald, A. H. 2004. Universal intrinsic spin Hall effect. Phys. Rev. Lett., 92, 126603.Google Scholar
[28] Murakami, S., Nagaosa, N., and Zhang, S.-C. 2003. Dissipationless quantum spin current at room temperature. Science, 301, 1348.Google Scholar
[29] Hoffman, S., Sato, K., and Tserkovnyak, Y. 2013. Landau-Lifshitz theory of the longitudinal spin Seebeck effect. Phys. Rev. B, 88, 064408.Google Scholar
[30] Kehlberger, A., Ritzmann, U., Hinzke, D., Guo, E.-J., Cramer, J., Jakob, G., Onbasli, M. C., Kim, D. H., Ross, C. A., Jungfleisch, M. B., Hillebrands, B., Nowak, U., and Kläui, M. 2015. Length scale of the spin Seebeck effect. Phys. Rev. Lett., 115, 096602.Google Scholar
[31] Knoester, M. E., Sinova, J., and Duine, R. A. 2014. Phenomenology of currentskyrmion interactions in thin films with perpendicular magnetic anisotropy. Phys. Rev. B, 89, 064425.Google Scholar
[32] Hals, K. M. D., and Brataas, A. 2013. Phenomenology of current-induced spin-orbit torques. Phys. Rev. B, 88, 085423.Google Scholar
[33] Tserkovnyak, Y., and Bender, S. A. 2014. Spin Hall phenomenology of magnetic dynamics. Phys. Rev. B, 90, 014428.Google Scholar
[34] Gilbert, T. L. 2004. A phenomenological theory of damping in ferromagnetic materials. Magnetics, IEEE Transactions on, 40, 3443–3449.Google Scholar
[35] Berger, L. 1996. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 54, 9353–9358.Google Scholar
[36] Halperin, B. I., and Hohenberg, P. C. 1969. Hydrodynamic theory of spin waves. Phys. Rev., 188, 898–918.Google Scholar
[37] Sonin, E. B. 2010. Spin currents and spin superfluidity. Advances in Physics, 59, 181–255.Google Scholar
[38] Skarsvåg, H., Holmqvist, C., and Brataas, A. 2015. Spin superfluidity and long-range transport in thin-film ferromagnets. Phys. Rev. Lett., 115, 237201.Google Scholar
[39] Takei, S., and Tserkovnyak, Y. 2014. Superfluid spin transport through easy-plane ferromagnetic insulators. Phys. Rev. Lett., 112, 227201.Google Scholar
[40] Chen, H., Kent, A. D., MacDonald, A. H., and Sodemann, I. 2014. Nonlocal transport mediated by spin supercurrents. Phys. Rev. B, 90, 220401.Google Scholar
[41] Zhang, S. S.-L., and Zhang, S. 2012. Magnon mediated electric current drag across a ferromagnetic insulator layer. Phys. Rev. Lett., 109, 096603.Google Scholar
[42] Cornelissen, L. J., Liu, J., Duine, R. A., Ben Youssef, J., and Van Wees, B. J. 2015. Long distance transport of magnon spin information in a magnetic insulator at room temperature. Nature Physics, 11, 1022.Google Scholar
[43] Cornelissen, L. J., Peters, K. J. H., Bauer, G. E. W., Duine, R. A., and van Wees, B. J. 2016. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94, 014412.Google Scholar
[44] König, J., Bønsager, M. C., and MacDonald, A. H. 2001. Dissipationless spin transport in thin film ferromagnets. Phys. Rev. Lett., 87, 187202.Google Scholar
[45] Takei, S., Halperin, B. I., Yacoby, A., and Tserkovnyak, Y. 2014. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B, 90, 094408.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×