Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-04-30T21:56:57.648Z Has data issue: false hasContentIssue false

Chapter 11 - Sea-level changes in time to do with the solid Earth

Published online by Cambridge University Press:  05 May 2014

David Pugh
Affiliation:
National Oceanography Centre, Liverpool
Philip Woodworth
Affiliation:
National Oceanography Centre, Liverpool
Get access

Summary

Whatever motion appears in the firmament arises not from any motion of the firmament, but from the earth’s motion.

Nicolaus Copernicus, The Commentariolus

Introduction

Mean sea level (MSL) records contain many examples of relative sea level being affected by geology as much as by the oceanography and climate discussed in the previous chapter. Figure 11.1 shows three examples; many more can be found in the scientific literature [1]. Unlike the sea-level rise experienced during the twentieth century at most locations around the world, the MSL record at Stockholm in Sweden shows a sea-level fall of approximately 4 mm/yr, which is a consequence of the land on which the tide gauge is situated experiencing a high rate of crustal uplift due to Glacial Isostatic Adjustment (GIA) [2, 3]. The record from Nezugaseki shows an example of a near-instantaneous change of MSL of about 20 cm due to the 1964 Niigata earthquake off the west coast of Japan [4]. Both of these examples are due to natural processes in the solid Earth. The third example is of a change in land level (and so relative sea level) due to an anthropogenic process, in this case groundwater pumping under Bangkok, Thailand [5]. Any analyst of MSL records will be aware of such large signals. However, the possibility of other, smaller and more subtle, signals in the data set cannot be excluded, and anyone who uses the records primarily for ocean or climate research must always be aware of them.

Type
Chapter
Information
Sea-Level Science
Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes
, pp. 296 - 317
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Emery, K. O. and Aubrey, D. G. 1991. Sea Levels, Land Levels, and Tide Gauges. New York: Springer-Verlag.CrossRefGoogle Scholar
Ekman, M., 1988. The world’s longest continued series of sea level observations. Pure and Applied Geophysics, 127, 73–77, .CrossRefGoogle Scholar
Ekman, M. 2009. The Changing Level of the Baltic Sea During 300 Years: A Clue to Understanding the Earth. Åland Islands: Summer Institute for Historical Geophysics ().Google Scholar
Details of the Niigata earthquake can be found at . This submarine earthquake generated a several metre tsunami that impacted the west coast of Japan.
Nicholls, R. J. 2010. Impacts of and responses to sea-level rise. In Understanding Sea-Level Rise and Variability (eds. Church, J. A., Woodworth, P. L., Aarup, T. and Wilson, S.), pp. 17–51. London: Wiley-Blackwell.CrossRefGoogle Scholar
Shennan, I. and Woodworth, P. L. 1992. A comparison of late Holocene and twentieth century sea-level trends from the UK and North Sea region. Geophysical Journal International, 109, 96–105, .CrossRefGoogle Scholar
Peltier, W. R. 2004. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annual Review of Earth and Plantery Sciences, 32, 111–149, .CrossRefGoogle Scholar
Lambeck, K., Woodroffe, C. D., Antonioli, F. et al. 2010. Palaeoenvironmental records, geophysical modelling and reconstruction of sea-level trends and variability on centennial and longer time scales. In Understanding Sea-Level Rise and Variability (eds. Church, J. A., Woodworth, P. L., Aarup, T. and Wilson, W. S.), pp. 61–121. London: Wiley-Blackwell.CrossRefGoogle Scholar
Intergovernmental Oceanographic Commission. 2012. The Global Sea Level Observing System (GLOSS) Implementation Plan – 2012. IOC Technical Series No. 100. Paris: UNESCO/Intergovernmental Oceanographic Commission. Available from .Google Scholar
Bevis, M., Scherer, W. and Merrifield, M. 2002. Technical issues and recommendations related to the installation of continuous GPS Stations at tide gauges. Marine Geodesy, 25, 87–99, .CrossRefGoogle Scholar
Intergovernmental Oceanographic Commission. 2006. Manual on Sea-level Measurements and Interpretation. Volume IV: An Update to 2006. (IOC Manuals and Guides No.14, Vol. IV; JCOMM Technical Report No.31; WMO/TD. No. 1339). Paris: UNESCO/Intergovernmental Oceanographic Commission. Available from .Google Scholar
Iliffe, J. C., Ziebart, M. K. and Turner, J. F. 2007. A new methodology for incorporating tide gauge data in sea surface topography models. Marine Geodesy, 30, 271–296, .CrossRefGoogle Scholar
Blewitt, G., Kreemer, C., Hammond, W. C. et al. 2006. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophysical Research Letters, 33, L11309, .CrossRefGoogle Scholar
(1) Wöppelmann, G., Letetrel, C., Santamaria, A. et al. 2009. Rates of sea-level change over the past century in a geocentric reference frame. Geophysical Research Letters, 36, L12607, . (2) Santamaría-Gómez, A., Gravelle, M., Collilieux, X. et al. 2012. Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field. Global and Planetary Change, 98–99, 6–17, .CrossRefGoogle Scholar
Teferle, F. N., Bingley, R. M., Orliac, E. J. et al. 2009. Crustal motions in Great Britain: evidence from continuous GPS, Absolute Gravity and Holocene sea-level data. Geophysical Journal International, 178, 23–46, .CrossRefGoogle Scholar
Bouin, M. N. and Wöppelmann, G. 2010. Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophysical Journal International, 180, 193–209, .CrossRefGoogle Scholar
The TIGA website is .
The SONEL website is .
Tamisiea, M. E. and Mitrovica, J. X. 2011. The moving boundaries of sea level change: understanding the origins of geographic variability. Oceanography, 24, 24–39, .CrossRefGoogle Scholar
Shennan, I., Milne, G. and Bradley, S. 2012. Late Holocene vertical land motion and relative sea-level changes: lessons from the British Isles. Journal of Quaternary Science, 27, 64–70, .CrossRefGoogle Scholar
(1) Nerem, R. S. and Mitchum, G. T. 2002. Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements. Geophysical Research Letters, 29, 1934, . (2) Kuo, C. Y, Shum, C. K., Braun, A., Cheng, K.-C. and Yi, Y. 2008. Vertical motion determined using satellite altimetry and tide gauges. Terrestrial, Atmospheric and Oceanic Sciences, 19, 21–35, . (3) Ostanciaux, É, Husson, L., Choblet, G., Robin, C. and Pedoja, K. 2012. Present-day trends of vertical ground motion along the coast lines. Earth-Science Reviews, 110, 74–92, . (4) Wöppelmann, G. and Marcos, M. 2012. Coastal sea level rise in southern Europe and the nonclimate contribution of vertical land motion. Journal of Geophysical Research, 117, C01007, . (5) King, M. A., Keshin, M., Whitehouse, P. L. et al. 2012. Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement. Geophysical Research Letters, 39, L14604, .CrossRefGoogle Scholar
Farrell, W. E. 1972. Deformation of the Earth by surface loads. Reviews of Geophysics, 10, 3, .CrossRefGoogle Scholar
Teferle, F. N., Bingley, R. M., Williams, S. D. P., Baker, T. F. and Dodson, A. H. 2006. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tide-gauges in the UK. Philosophical Transactions of the Royal Society, 364, 917–930, .CrossRefGoogle ScholarPubMed
Mazzotti, S., Lambert, A., Henton, J., James, T. S. and Courtier, N. 2011. Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid-continent North America. Geophysical Research Letters, 38, L24311, .CrossRefGoogle Scholar
Cazenave, A., Soudarin, L., Cretaux, J.-F. and Le Provost, C. 1999. Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophysical Research Letters, 26, 14, .CrossRefGoogle Scholar
Ray, R. D., Beckley, B. D and Lemoine, F. G. 2010. Vertical crustal motion derived from satellite altimetry and tide gauges, and comparisons with DORIS measurements. Advances in Space Research, 45, 1510–1522, .CrossRefGoogle Scholar
Hannsen, R. F. 2001. Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Brooks, B. A., Merrifield, M. A., Foster, J. et al. 2007. Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin. Geophysical Research Letters, 34, L01611, .CrossRefGoogle Scholar
(1) Milne, G. A., Mitrovica, J. X., Scherneck, H.-G. et al. 2004. Continuous GPS measurements of postglacial adjustment in Fennoscandia: 2. Modeling results. Journal of Geophysical Research, 109, B02412, . (2) Lidberg, M., Johansson, J. M., Scherneck, H.-G. and Milne, G. A. 2010. Recent results based on continuous GPS observations of the GIA process in Fennoscandia from BIFROST. Journal of Geodynamics, 50, 8–18, .CrossRefGoogle Scholar
(1)Wolf, D., Klemann, V., Wünsch, J. and Zhang, F.-P. 2006. A reanalysis and reinterpretation of geodetic and geological evidence of glacial-isostatic adjustment in the Churchill Region, Hudson Bay. Surveys in Geophysics, 27, 19–61, . (2) Henton, J. A., Craymer, M. R., Ferland, R. et al. 2006. Crustal motion and deformation monitoring of the Canadian landmass. Geomatica, 60, 173–191.CrossRefGoogle Scholar
Sella, G. F., Stein, S., Dixon, T. H. et al. 2007. Geophysical Research Letters, 34, L02306, .CrossRef
Hillaire-Marcel, C. and Fairbridge, R. W. 1978. Isostasy and eustasy of Hudson Bay. Geology, 6, 117–122.2.0.CO;2>CrossRefGoogle Scholar
Peltier, W. R., 2001. Global glacial isostatic adjustment. In Sea level rise: history and consequences (eds. Douglas, B. C., Kearney, M. S. and Leatherman, S. P.), pp. 65–95. San Diego, CA: Academic Press.CrossRefGoogle Scholar
(1) Woodward, R. S. 1888. On the form and position of mean sea level. United States Geological Survey Bulletin, 48, 87–170. (2) Farrell, W. E. and Clark, J. A. 1976. On postglacial sea level. Geophysical Journal of the Royal Astronomical Society, 46, 647–667, . (3) Mitrovica, J. X. and Milne, G. A. 2003. On post-glacial sea level: I. General theory. Geophysical Journal International, 154, 253–267, .Google Scholar
Douglas, B. C. 1991. Global sea level rise. Journal of Geophysical Research, 96, C4, .CrossRefGoogle Scholar
Woodworth, P. L., Gehrels, W. R and Nerem, R. S. 2011. Nineteenth and twentieth century changes in sea level. Oceanography, 24, 80–93, .CrossRefGoogle Scholar
Chambers, D. P., Wahr, J., Tamisiea, M. E. and Nerem, R. S. 2010. Ocean mass from GRACE and glacial isostatic adjustment. Journal of Geophysical Research, 115, B11415, .CrossRefGoogle Scholar
Tamisiea, M. E. 2011. Ongoing glacial isostatic contributions to observations of sea level change. Geophysical Journal International, 186, 1036–1044, .CrossRefGoogle Scholar
Peltier, W. R., Drummond, R. and Roy, K. 2012. Comment on “Ocean mass from GRACE and glacial isostatic adjustment” by D. P. Chambers et al. Journal of Geophysical Research, 117, B11403, .CrossRefGoogle Scholar
Steffen, H. and Wu, P. 2011. Glacial isostatic adjustment in Fennoscandia: a review of data and modeling. Journal of Geodynamics, 52, 169–204, .CrossRefGoogle Scholar
Kendall, R. A., Latychev, K., Mitrovica, J. X., Davis, J. E. and Tamisiea, M. E. 2006. Decontaminating tide gauge records for the influence of glacial isostatic adjustment: The potential impact of 3-D Earth structure. Geophysical Research Letters, 33, L24318, .CrossRefGoogle Scholar
Syvitski, J. P. M. 2008. Deltas at risk. Sustainability Science, 3, 23–32, .CrossRefGoogle Scholar
Syvitski, J. P. M., Kettner, A. J., Overeem, I. et al. 2009. Sinking deltas due to human activities. Nature Geoscience, 2, 681–686, .CrossRefGoogle Scholar
Bird, P. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics and Geosystems, 4, 1027, .CrossRefGoogle Scholar
Di Donato, G., Negredo, A. M., Sabadini, R. and Vermeersen, L. L. A. 1999. Multiple processes causing sea-level rise in the Central Mediterranean. Geophysical Research Letters, 26, 12, .CrossRefGoogle Scholar
Chappell, J., Ota, Y. and Berryman, K. 1996. Late Quaternary coseismic uplift history of Huon Peninsula, Papua New Guinea. Quaternary Science Reviews, 15, 7–22, .CrossRefGoogle Scholar
Church, J. A., Gregory, J. M., Huybrechts, O. et al. 2001. Changes in sea level. In Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. Houghton, J. T., Ding, Y., Griggs, D. J. et al.). Cambridge: Cambridge University Press.Google Scholar
Darwin, C. 1845. A Naturalist’s Voyage: Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World (2nd edition). London: John Murray. (Note that the texts of versions of this book are freely available on the internet.)Google Scholar
As one of many examples, see Nishimura, T., Munekane, H. and Yarai, H. 2011. The 2011 off the Pacific coast of Tohoku Earthquake and its aftershocks observed by GEONET. Earth, Planets and Space, 63, 631–636, .CrossRefGoogle Scholar
Mitrovica, J. X., Tamisiea, M. E., Ivins, E. R. et al. 2010. Surface mass loading on a dynamic Earth: complexity and contamination in the geodetic analysis of global sea-level trends. In Understanding Sea-Level Rise and Variability (eds. Church, J. A., Woodworth, P. L., Aarup, T. and Wilson, W. S.), pp. 289–325. London: Wiley-Blackwell.Google Scholar
Meltzner, A. J., Sieh, K., Abrams, M. et al. 2006. Uplift and subsidence associated with the great Aceh-Andaman earthquake of 2004. Journal of Geophysical Research, 111, B02407, .CrossRefGoogle Scholar
Melini, D. and Piersanti, A. 2006. Impact of global seismicity on sea level change assessment. Journal of Geophysical Research, 111, B03406, .CrossRefGoogle Scholar
Centro Nacional de Datos Hidrográficos y Oceanográicos de Chile (CENHOC) of the Servicio Hidrográfico y Oceanográfico de la Armada de Chile (SHOA), .
Penland, S. and Ramsey, K. E. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research, 6, 323–342.Google Scholar
Phien-Wej, N., Giao, P. H. and Nutalaya, P. 2006. Land subsidence in Bangkok, Thailand. Engineering Geology, 82, 187–201, .CrossRefGoogle Scholar
Jacinto, G. S., Azanza, R. V., Velasquez, I. B and Siringan, F. P. 2006. Manila Bay: environmental challenges and opportunities. In The Environment in Asia Pacific Harbours (ed. Wolanksi, E.), pp. 309–328. Berlin: Springer.CrossRefGoogle Scholar
Camuffo, D. and Sturaro, G. 1983. Sixty-cm submersion of Venice discovered thanks to Canaletto’s paintings. Climatic Change, 58, 333–343, .CrossRefGoogle Scholar
Pirazzoli, P. A. 1991. Possible defenses against a sea-level rise in the Venice Area, Italy. Journal of Coastal Research, 7, 231–248.Google Scholar
Woodworth, P. L. 2003. Some comments on the long sea level records from the northern Mediterranean. Journal of Coastal Research, 19, 212–217.Google Scholar
Bock, Y., Wdowinski, S., Ferretti, A., Novali, F. and Fumagalli, A. 2012. Recent subsidence of the Venice Lagoon from continuous GPS and interferometric synthetic aperture radar. Geochemistry, Geophysics, Geosystems, 13, .Google Scholar
Humphries, L. 2001. A review of relative sea level rise caused by mining-induced subsidence in the coastal zone: some implications for increased coastal recession. Climate Research, 18, 147–156, .CrossRefGoogle Scholar
Mitrovica, J. X., Tamisiea, M. E., Davis, J. L. and Milne, G. A. 2001. Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature, 409, 1026–1029, .CrossRefGoogle ScholarPubMed
Riva, R. E. M., Bamber, J. L., Lavallée, D. A. and Wouters, B. 2010. Sea-level fingerprint of continental water and ice mass change from GRACE. Geophysical Research Letters, 37, L19605, .CrossRefGoogle Scholar
Yin, J. J., Schlesinger, M. E. and Stouffer, R. J. 2009. Model projections of rapid sea level rise on the northeast coast of the United States. Nature Geoscience, 2, 262–266, .CrossRefGoogle Scholar
Lorbacher, K., Dengg, J., Böning, C. W. and Biastoch, A. 2010. Regional patterns of sea level change related to interannual variability and multidecadal trends in the Atlantic Meridional Overturning Circulation. Journal of Climate, 23, 4243–4254, .CrossRefGoogle Scholar
(1) Sallenger, A. H., Doran, K. S. and Howd, P. A. 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change, 2, 884–888, . (2) Boon, J. D. 2012. Evidence of sea level acceleration at U. S. and Canadian tide stations, Atlantic coast, North America. Journal of Coastal Research, 28, 1437–1445, .CrossRefGoogle Scholar
Meehl, G. A., Stocker, T. F., Collins, W. et al. 2007. Global climate projections. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Solomon, S., Qin, D. and Manning, M.). Cambridge: Cambridge University Press.Google Scholar
Gregory, J. M., White, N. J., Church, J. A. et al. 2012. Twentieth-century global-mean sea-level rise: is the whole greater than the sum of the parts?Journal of Climate, 26, 4476–4499, .CrossRefGoogle Scholar
(1) Plag, H.-P. 2006. Recent relative sea-level trends: an attempt to quantify the forcing factors. Philosophical Transactions of the Royal Society of London A, 364, 821–844, . (2) Wake, L. M., Milne, G. A. and Leuliette, E. 2006. 20th Century sea-level change along the eastern US: unravelling the contributions from steric changes, Greenland ice sheet mass balance and Late Pleistocene glacial loading. Earth and Planetary Science Letters, 250, 572–580, . (3) Marcos, M. and Tsimplis, M. N. 2007. Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophysical Research Letters, 34, L18604, (4) Engelhart, S. E., Horton, B. P., Douglas, B. C., Peltier, W. R. and Trnqvist, T. E. 2009. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology, 37, 1115–1118, .CrossRefGoogle ScholarPubMed
Mitrovica, J. X., Gomez, N., Morrow, E., et al. 2011. On the robustness of predictions of sea level fingerprints. Geophysical Journal International, 187, 729–742, .CrossRefGoogle Scholar
Fiedler, J. W. and Conrad, C. P. 2010. Spatial variability of sea level rise due to water impoundment behind dams. Geophysical Research Letters, 37, L12603, .CrossRefGoogle Scholar
Dyer, K. R. 1997. Estuaries: A Physical Introduction. Chichester: John Wiley and Sons.Google Scholar
Dearing, J. A., Richmond, N., Plater, A. J. et al. 2006. Modelling approaches for coastal simulation based on cellular automata: the need and potential. Philosophical Transactions of the Royal Society A, 364, 1051–1071; .CrossRefGoogle ScholarPubMed
Mokrech, M., Hanson, S., Nicholls, R. et al. 2011. The Tyndall coastal simulator. Journal of Coastal Conservation, 15, 325–335, .CrossRefGoogle Scholar
Pugh, D. T. 1987. Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. Chichester: Wiley. This book may be downloaded from .Google Scholar
Hill, D. F., Griffiths, S. D., Peltier, W. R., Horton, B. P. and Törnqvist, T. E. 2011. High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. Journal of Geophysical Research, 116, C10014, .CrossRefGoogle Scholar
Uehara, K., Scourse, J. D., Horsburgh, K. J., Lambeck, K. and Purcell, A. 2006. Tidal evolution of the northwest European shelf seas from the last glacial maximum to the present. Journal of Geophysical Research, 111, C09025, .CrossRefGoogle Scholar
Hoitink, A. J. F., Hoekstra, P. and van Maren, D. S. 2003. Flow asymmetry associated with astronomical tides: implications for the residual transport of sediment. Journal of Geophysical Research, 108, 3315, .CrossRefGoogle Scholar
Van Maren, D. S., Hoekstra, P. and Hoitink, A. J. F. 2004. Tidal flow asymmetry in the diurnal regime: bed load transport and morphologic changes around the Red River Delta. Ocean Dynamics, 54, 424–434, .CrossRefGoogle Scholar
Woodworth, P. L., Blackman, D. L., Pugh, D. T. and Vassie, J. M. 2005. On the role of diurnal tides in contributing to asymmetries in tidal probability distribution functions in areas of predominantly semi-diurnal tide. Estuarine, Coastal and Shelf Science, 64, 235–240, .CrossRefGoogle Scholar
Araújo, I. B., Dias, J. M. and Pugh, D. T. 2008. Model simulations of tidal changes in a coastal lagoon, the Ria de Aveiro (Portugal). Continental Shelf Research, 28, 1010–1025, .CrossRefGoogle Scholar
(1) Woodworth, P. L., Shaw, S. M. and Blackman, D. B. 1991. Secular trends in mean tidal range around the British Isles and along the adjacent European coastline. Geophysical Journal International, 104, 593–610, . (2) Wahl, T., Jensen, J. and Frank, T. 2010. On analysing sea level rise in the German Bight since 1844. Natural Hazards and Earth System Sciences, 10, 171–179, .CrossRefGoogle Scholar
Wong, P. P. et al. 2014. Coastal systems and low-lying areas. In Climate Change 2013: Impacts, Adaptation and Vulnerability. Working Group II Report of the Fifth Scientific Assessment of the Intergovernmental Panel on Climate Change, Chapter 5. Cambridge: Cambridge University Press.Google Scholar
Bird, E. C. F. 1985. Coastline Changes: A Global Review. Chichester: John Wiley and Sons.Google Scholar
Gratiot, N., Anthony, E. J., Gardel, A. et al. 2008. Significant contribution of the 18.6 year tidal cycle to regional coastal changes. Nature Geoscience, 1, 169–172, .CrossRefGoogle Scholar
Taylor, J. A., Murdock, A. P. and Pontee, N. I. 2004. A macroscale analysis of coastal steepening around the coast of England and Wales. Geographical Journal, 170, 179–188, .CrossRefGoogle Scholar
Bruun, P. 1962. Sea-level rise as a cause of shore erosion. Journal of the Waterways and Harbors Division, 88, 117–130.Google Scholar
Zhang, K. Q., Douglas, B. C. and Leatherman, S. P. 2004. Global warming and coastal erosion. Climatic Change, 64, 41–58, .CrossRefGoogle Scholar
Woodworth, P. L., Gregory, J. M. and Nicholls, R. J. 2004. Long term sea level changes and their impacts. In The Sea: Volume 13 (eds. Robinson, A. R. and Brink, K. H.), pp. 715–753. Cambridge, MA: Harvard University Press.Google Scholar
Plater, A. J. and Kirby, J. R. 2011. Sea-level change and coastal geomorphic response. In Treatise on Estuarine and Coastal Science: Volume 3 (eds. Wolanski, E. and McLusky, D. S.), pp. 39–72. Waltham, MA: Academic Press.CrossRefGoogle Scholar
ESA, 1999. The Gravity Field and Steady-State Ocean Circulation Mission. Reports for Mission Selections. ESA Report SP-1233(1). Noordwijk, the Netherlands: European Space Agency.Google Scholar
Lyell, C. 1835. On the proofs of a gradual rising of the land in certain parts of Sweden. Philosophical Transactions of the Royal Society of London, 125, 1–38, .CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×