Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T08:53:49.264Z Has data issue: false hasContentIssue false

Chapter 8 - Tsunamis

Published online by Cambridge University Press:  05 May 2014

David Pugh
Affiliation:
National Oceanography Centre, Liverpool
Philip Woodworth
Affiliation:
National Oceanography Centre, Liverpool
Get access

Summary

  1. Mere anarchy is loosed upon the world,

  2. The blood-dimmed tide is loosed, and everywhere

  3. The ceremony of innocence is drowned.

  4. W. B.Yeats, The Second Coming

Introduction

In the past few years, two giant tsunamis caused by undersea earthquakes have caused major loss of life and damage to coastal infrastructure. On 26 December 2004, a moment magnitude (Mw) 9.3 megathrust earthquake, the third largest on record, took place along 1600 km of the subduction zone from Sumatra to the Andaman Islands in the eastern Indian Ocean [1, 2]. The resulting tsunami waves caused enormous damage, particularly in Indonesia, India, Sri Lanka and Thailand, and killed more than 230,000 people (Figure 8.1) [3, 4]. On 11 March 2011, the Tōhoku (or Sendai) Mw = 9.0 megathrust earthquake, the fourth largest on record, occurred 130 km off the east coast of Japan leaving some 20,000 people dead and tremendous destruction of coastal infrastructure (Figure 8.2), including a major nuclear emergency at the Fukushima Daiichi power plant [5]. These two catastrophic events have had many important consequences including, it will be seen, within sea-level research.

Type
Chapter
Information
Sea-Level Science
Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes
, pp. 189 - 222
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Details of the 2004 Sumatra and other earthquakes may be found at .
Lay, T., Kanamori, H., Ammon, C. J. et al. 2005. The Great Sumatra-Andaman earthquake of 26 December 2004. Science, 308, 1127–1133, .CrossRefGoogle ScholarPubMed
Rossetto, T., Peiris, N., Pomonis, A. et al. 2007. The Indian Ocean tsunami of December 26, 2004: observations in Sri Lanka and Thailand. Natural Hazards, 42, 105–124, .CrossRefGoogle Scholar
.
Lay, T. and Kanamori, H. 2011. Insights from the great 2011 Japan earthquake. Physics Today, 64, 33–39, .CrossRefGoogle Scholar
Solheim, A., Berg, K., Forsberg, C. F. and Bryn, P. 2005. The Storegga Slide complex: repetitive large scale sliding with similar cause and development. Marine and Petroleum Geology, 22, 97–107, .CrossRefGoogle Scholar
Smith, D. E., Shib, S., Cullingford, R. A. et al. 2004. The Holocene Storegga Slide tsunami in the United Kingdom. Quaternary Science Reviews, 23, 2291–2321, .CrossRefGoogle Scholar
Bondevik, S., Mangerud, J., Dawson, S., Dawson, A. and Lohne, Ø. 2005. Evidence for three North Sea tsunamis at the Shetland Islands between 8000 and 1500 years ago. Quaternary Science Reviews, 24, 1757–1775, .CrossRefGoogle Scholar
Romundset, A. and Bondevik, S. 2011. Propagation of the Storegga tsunami into ice-free lakes along the southern shores of the Barents Sea. Journal of Quaternary Science, 26, 457–462, .CrossRefGoogle Scholar
Goodman-Tchernov, B. N., Dey, H. W., Reinhardt, E. G., McCoy, F. and Mart, Y. 2009. Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology, 37, 943–946, .CrossRefGoogle Scholar
Hamouda, A. Z. 2006. Numerical computations of 1303 tsunamigenic propagation towards Alexandria, Egyptian Coast. Journal of African Earth Sciences, 44, 37–44, .CrossRefGoogle Scholar
Dawson, A. G., Musson, R. M. W., Foster, I. D. L. and Brunsden, D. 2000. Abnormal historic sea-surface fluctuations, SW England. Marine Geology, 170, 59–68, .CrossRefGoogle Scholar
Horsburgh, K. J., Wilson, C., Baptie, B. J. et al. 2008. Impact of a Lisbon-type tsunami on the U. K. coastline and the implications for tsunami propagation over broad continental shelves. Journal of Geophysical Research, 113, C04007, .CrossRefGoogle Scholar
Stothers, R. B. 1984. The Great Tambora eruption in 1815 and its aftermath. Science, 224, 1191–1198, .CrossRefGoogle ScholarPubMed
Mader, C. L. and Gittings, M. L. 2006. Numerical model for the Krakatoa hydrovolcanic explosion and tsunami. Science of Tsunami Hazards, 24, 174–182.Google Scholar
Fine, I. V., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E. and Kulikov, E. A. 2005. The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Marine Geology, 215, 45–57, .CrossRefGoogle Scholar
(1) Heezen, B. C. and Ewing, W. M. 1952. Turbidity currents and submarine slumps and the 1929 Grand Banks earthquake. American Journal of Science, 250, 849–873, . (2) Piper, D. J. W., Shor, A. N. and Hughes Clarke, J. E., 1988. The 1929 Grand Banks earthquake, slump and turbidity current. In Sedimentologic Consequences of Convulsive Geologic Events (ed. H. E. Clifton), pp. 77–92. Special Papers of the Geological Society of America, 229, doi:10.1130/SPE229-p77.Google Scholar
See the NOAA Center for Tsunami Research website .
Catalogues include: (1) NOAA/WDC Global Historical Tsunami Database at NGDC ; (2) The International Tsunami Information Centre catalogue ; (3) Tinti, S., Maramai, A. and Graziani, L. 2004. The new catalogue of Italian tsunamis. Natural Hazards, 33, 439–465, ; (4) Papadopoulos, G. A., Daskalaki, E., Fokaefs, A. and Giraleas, N. 2007. Tsunami hazards in the Eastern Mediterranean: strong earthquakes and tsunamis in the East Hellenic Arc and Trench system. Natural Hazards and Earth System Sciences, 7, 57–64, ; (5) Pasarić, M., Brizuela, B., Graziani, L., Maramai, A. and Orlić, M. 2012. Historical tsunamis in the Adriatic Sea. Natural Hazards, 61, 281–316, ; (6) Long, D. and Wilson, C. K. 2007. A Catalogue of Tsunamis in the UK. British Geological Survey Commissioned Report, CR/07/077; (7) Soloviev, S. L., Solovieva, O. N., Go,C. N., Kim, K. S. and Shchetnikov, N. A., 2000. Tsunamis in the Mediterranean Sea 2000 B.C.–2000 A.D. Advances in Natural and Technological Hazards Research, 13. Dordrecht: Kluwer, (8) A review of catalogues can also be found in Joseph (2011), see below.
Joseph, A. 2011. Tsunamis: Detection, Monitoring, and Early-Warning Technologies. Burlington, MA: Academic Press.Google Scholar
Horsburgh, K. and Horritt, M. 2006. The Bristol Channel floods of 1607: reconstruction and analysis. Weather, 61, 272–277, .CrossRefGoogle Scholar
The PTWC website is
Igarashi, Y., Kong, L., Yamamoto, M. and McCreery, C. S. 2011. Anatomy of historical tsunamis: lessons learned for tsunami warning. Pure and Applied Geophysics, 168, 2043–2063, .CrossRefGoogle Scholar
Mofjeld, H. O. 2009. Tsunami measurements. In The Sea. Volume 15: Tsunamis, pp. 201–235. Cambridge, MA and London, UK: Harvard University Press.Google Scholar
IOC, 2006. Manual on Sea-Level Measurement and Interpretation. Volume 4: An Update to 2006 (eds. Aarup, T., Merrifield, M., Perez, B., Vassie, I. and Woodworth, P.). Intergovernmental Oceanographic Commission Manuals and Guides No. 14. Paris: UNESCO/Intergovernmental Oceanographic Commission.Google Scholar
IOC, 2013. Tsunami Glossary (Revised edition). Intergovernmental Oceanographic Commission Technical Series, 85 (IOC/2008/Ts/85rev). Paris: UNESCO/Intergovernmental Oceanographic Commission.Google Scholar
Bryant, E. 2008. Tsunami: The Underrated Hazard (2nd edition). Chichester: Springer Praxis Books.Google Scholar
Levin, B. and Nosov, M. 2010. Physics of Tsunamis. Springer.Google Scholar
Kowalik, Z. 2012. Introduction to numerical modeling of tsunami waves. Available from .
Ward, S. N. 2011. Tsunami. In The Encyclopedia of Solid Earth Geophysics (ed. Gupta, H.), pp. 1473–1493. Dordrecht: Springer. .CrossRefGoogle Scholar
IOC, 2012. The Global Sea Level Observing System (GLOSS) Implementation Plan – 2012. UNESCO/Intergovernmental Oceanographic Commission (IOC Technical Series No. 100). Available from .
Rabinovich, A. B. and Thomson, R. E. 2007. The 26 December 2004 Sumatra tsunami: analysis of tide gauge data from the World Ocean. Part 1. Indian Ocean and South Africa. Pure and Applied Geophysics, 164, 261–308, .CrossRefGoogle Scholar
Abe, K. 2006. Dominant periods of the 2004 Sumatra tsunami and the estimated source size. Earth, Planets and Space, 58, 217–221.CrossRefGoogle Scholar
Tang, L., Titov, V. V., Bernard, E. N. et al. 2012. Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. Journal of Geophysical Research, 117, C08008, .CrossRefGoogle Scholar
Tappin, D. R., Watts, P. and Grilli, S. T. 2008. The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event. Natural Hazards and Earth System Sciences, 8, 243–266, .CrossRefGoogle Scholar
Tanioka, Y. 1999. Analysis of the far-field tsunamis generated by the 1998 Papua New Guinea earthquake. Geophysical Research Letters, 26, 3393–3396, .CrossRefGoogle Scholar
González, F. I. 1999. Tsunami!Scientific American, 280, 56–65, .CrossRefGoogle Scholar
Mader, C. L. 2001. Modeling the 1755 Lisbon tsunami. Science of Tsunami Hazards, 19, 93–98.Google Scholar
Lighthill, M. J. 1978. Waves in Fluids. Cambridge: Cambridge University Press.Google Scholar
For a general treatment of ocean waves see, LeBlond, P. H. and Mysak, L. A. 1978. Waves in the Ocean. Amsterdam: Elsevier Scientific Publishing.Google Scholar
Faber, T. E. 1995. Fluid Dynamics for Physicists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McCaffrey, R. 2009. The tectonic framework of the Sumatran Subduction Zone. Annual Review of Earth and Planetary Sciences, 37, 345–366, .CrossRefGoogle Scholar
Certain earthquakes such as Tōhoku can be associated with a release of gravitational energy as well as elastic strain, see McKenzie, D. and Jackson, J. 2012. Tsunami earthquake generation by the release of gravitational potential energy. Earth and Planetary Science Letters, 345–348, 1–8, .Google Scholar
Murty, T. S. 1977. Seismic Sea Waves: Tsunamis. Ottawa: Department of Fisheries and the Environment, Fisheries and Marine Service.Google Scholar
Maeda, T., Furumura, T., Sakai, S. and Shinohara, M. 2011. Significant tsunami observed at the ocean-bottom pressure gauges at 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63, 803–808, .CrossRefGoogle Scholar
Geist, E. L., Bilek, S. L., Arcas, D. and Titov, V. V. 2006. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes. Earth, Planets and Space, 58, 185–193.CrossRefGoogle Scholar
(1) Kowalik, Z., Logan, T., Knight, W. and Whitmore, P. 2005. Numerical modeling of the global Indonesian tsunami of 26 December 2004. Science of Tsunami Hazards, 23, 40–56. (2) Nirupama, N., Murty, T. S., Bistor, I. and Rao, A. D. 2006. Energetics of the tsunami of 26 December 2004 in the Indian Ocean: a brief review. Marine Geodesy, 29, 39–47, .CrossRefGoogle Scholar
Tanioka, Y., Yudhicara, , Kususose, T. et al. 2006. Rupture process of the 2004 great Sumatra-Andaman earthquake estimated from tsunami waveforms. Earth, Planets and Space, 58, 203–209.CrossRefGoogle Scholar
(1) Song, Y. T., Ji, C., Fu, L.-L. et al. 2005. The 26 December 2004 tsunami source estimated from satellite radar altimetry and seismic waves. Geophysical Research Letters, 32, L20601, doi:10.1029/2005GL023683. (2)Song, Y. T., Fu, L.-L., Zlotnicki, V. et al. 2008. The role of horizontal impulses of the faulting continental slope in generating the 26 December 2004 tsunami. Ocean Modelling, 20, 362–379, . (3)Song, Y. T. and Han, S-C. 2011. Satellite observations defying the long-held tsunami genesis theory. In Remote Sensing of the Changing Oceans (ed. D. Tang), pp. 327–342. Berlin: Springer-Verlag, doi:10.1007/978-3-642-16541-2_17.CrossRefGoogle Scholar
In the geological modelling of long period tsunami generation one also has to consider the structure of the solid Earth and its normal modes, see Ward, S. N. 1980. Relationships of tsunami generation and an earthquake source. Journal of Physics of the Earth, 28, 441–474.CrossRefGoogle Scholar
(1) Blewitt, G., Kreemer, C., Hammond, W. C. et al. 2006. Rapid determination of earthquake magnitude using GPS for tsunami warning systems. Geophysical Research Letters, 33, L11309, . (2) Murray-Moraleda, J. 2009. GPS: applications in crustal deformation monitoring. In Encyclopedia of Complexity and Systems Science (ed. R. A. Myers), pp. 4249–4283. Springer, doi:10.1007/978-0-387-30440-3_250.CrossRefGoogle Scholar
Okada, Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.Google Scholar
Satake, K. 2009. Tsunamis, inverse problem of. In Encyclopedia of Complexity and Systems Science (ed. Myers, R. A.), pp. 1022–1034. Springer, .Google Scholar
Yeh, H., Imamura, F., Synolakis, C. et al. 1993. The Flores Island tsunamis. Eos, Transactions of the American Geophysical Union, 74(33), 369 and 371–373.CrossRefGoogle Scholar
Imamura, F., Gica, E., Takahashi, T. and Shuto, N. 1995. Numerical simulation of the 1992 Flores tsunami: interpretation of tsunami phenomena in Northeastern Flores Island and damage at Babi Island. Pure and Applied Geophysics, 144, 555–568, .CrossRefGoogle Scholar
Billi, A., Funiciello, R., Minelli, L. et al. 2008. On the cause of the 1908 Messina tsunami, southern Italy. Geophysical Research Letters, 35, L06301, .CrossRefGoogle Scholar
Bondevik, S., Løvholt, F., Harbitz, C. et al. 2005. The Storegga Slide tsunami: comparing field observations with numerical simulations. Marine and Petroleum Geology, 22, 195–208, .CrossRefGoogle Scholar
Weninger, B., Schulting, R., Bradtmõller, M. et al. 2008. The catastrophic final flooding of Doggerland by the Storegga Slide tsunami. Documenta Praehistorica, 35, 1–24.CrossRefGoogle Scholar
Masson, D. G., Wynn, R. B. and Talling, P. J. 2010. Large landslides on passive continental margins: processes, hypotheses and outstanding questions. In Submarine Mass Movements and Their Consequences (eds. Mosher, D. C. et al.), pp. 153–165. Advances in Natural and Technological Hazards Research, Volume 28, Berlin: Springer-Verlag.Google Scholar
Vogt, P. R. and Jung, W.-Y. 2002. Holocene mass wasting on upper non-polar continental slopes: due to post-glacial ocean warming and hydrate dissociation?Geophysical Research Letters, 29, 9, .CrossRefGoogle Scholar
Mienert, J., Vanneste, M., Bünz, S., Andreassen, K., Haflidason, H. and Sejrup, H. P. 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Marine and Petroleum Geology, 22, 233–244, .CrossRefGoogle Scholar
Lobkovsky, L. I., Mazova, R. K., Garagash, I. A. and Kataeva, L. Y. 2006. Numerical simulation of the 7 February 1963 tsunami in the Bay of Corinth, Greece. Russian Journal of Earth Sciences, 8, ES5003, .CrossRefGoogle Scholar
Suleimani, E., Hansen, R. and Haessler, P. J. 2009. Numerical study of tsunami generated by multiple submarine slope failures in Resurrection Bay, Alaska, during the MW 9.2 1964 earthquake. Pure and Applied Geophysics, 166, 131–152, .CrossRefGoogle Scholar
Lander, J. F., Lockridge, P. A. and Kozuch, M. J. 1993. Tsunamis Affecting the West Coast of the United States 1806–1992. National Geophysical Data Center Key to Geophysical Records Documentation No. 29.
Fine, I. V., Cherniawsky, J. Y., Rabinovich, A. B. and Stephenson, F. 2008. Numerical modeling and observations of tsunami waves in Alberni Inlet and Barkley Sound, British Columbia. Pure and Applied Geophysics, 165, 2019–2044, .CrossRefGoogle Scholar
James, T., Rogers, G., Cassidy, J. et al. 2013. Field studies target 2012 Haida Gwaii earthquake. Eos, Transactions of the American Geophysical Union, 94, 197–198, .CrossRefGoogle Scholar
Rabinovich, A. B., Thomson, R. E., Bornhold, B. D., Fine, I. V. and Kulikov, E. A. 2003. Numerical modelling of tsunamis generated by hypothetical landslides in the Strait of Georgia, British Columbia. Pure and Applied Geophysics, 60, 1273–1313, .CrossRefGoogle Scholar
(1) Kulikov, E. A., Rabinovich, A. B., Thomson, R. E. and Bornhold, B. D. 1996. The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. Journal of Geophysical Research, 101, C3, . (2) Rabinovich, A. B., Thomson, R. E. Kulikov, E. A., Bornhold, B. D. and Fine, I. V. 1999. The landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska: a case study. Geophysical Research Letters, 26, 19, doi:10.1029/1999GL002334. (3) Thomson, R. E., Rabinovich, A. B., Kulikov, E. A., Fine, I. V. and Bornhold, B. D. 2001. On numerical simulation of the landslide-generated tsunami of November 3, 1994 in Skagway Harbor, Alaska. In Tsunami Research at the End of a Critical Decade (ed. G. Hebenstreit), pp. 243–282. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Kulikov, E. A., Rabinovich, A. B., Fain, I. V., Bornhold, B. D. and Thomson, R. E. 1998. Tsunami generation by landslides at the Pacific coast of North America and the role of tides. Oceanology, 38, 323–328.Google Scholar
Labbé, M., Donnadieu, C., Daubord, C. and Hébert, H. 2012. Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): comparison with coastal data. Journal of Geophysical Research, 117, F01008, .CrossRefGoogle Scholar
Fine, I. V., Rabinovich, A. B., Thomson, R. E. and Kulikov, E. A. 2003. Numerical modeling of tsunami generation by submarine and subaerial landslides. In Submarine Landslides and Tsunamis (eds. Yalciner, A. C., Pelinovsky, E. N., Synolakis, C. E. and Okal, E.), pp. 69–88. NATO Advanced Series, Volume 21, Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
(1) Weiss, R., Fritz, H. M. and Wünnemann, K. 2009. Hybrid modeling of the mega-tsunami runup in Lituya Bay after half a century. Geophysical Research Letters, 36, L09602, . (2) Fritz, H. M., Mohammed, F. and Yoo, J. 2009. Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure and Applied Geophysics, 166, 153–175, doi:10.1007/s00024-008-0435-4.CrossRefGoogle Scholar
Bornhold, B. D., Harper, J. R., McLaren, D. and Thomson, R. E. 2007. Destruction of the first nations village of Kwalate by a rock avalanche-generated tsunami. Atmosphere-Ocean, 45, 123–128, .CrossRefGoogle Scholar
Panthi, K. K. and Nilsen, B. 2006. Numerical analysis of stresses and displacements for the Tafjord slide, Norway. Bulletin of Engineering Geology and the Environment, 65, 57–63, .CrossRefGoogle Scholar
Naranjo, J. A., Arenas, M., Clavero, J. and Munoz, O. 2009. Mass movement-induced tsunamis: main effects during the Patagonian Fjordland seismic crisis in Aisén (45° 25′S), Chile. Andean Geology, 36, 137–145. .Google Scholar
Ward, S. N. and Day, S. 2001. Cumbre Vieja Volcano: potential collapse and tsunami at La Palma, Canary Islands. Geophysical Research Letters, 28, 17, .CrossRefGoogle Scholar
Løvholt, F., Pedersen, G. and Gisler, G. 2008. Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research, 113, C09026, .CrossRefGoogle Scholar
Abadie, S. M., Harris, J. C., Grilli, S. T. and Fabre, R. 2012. Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): tsunami source and near field effects. Journal of Geophysical Research, 117, C05030, .CrossRefGoogle Scholar
(1) Winchester, S. 2004. Krakatoa: The Day the Earth Exploded: August 27, 1883. London: Penguin Books. (2) Maeno, F. and Imamura, F. 2011. Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. Journal of Geophysical Research, 116, B09205, .CrossRefGoogle Scholar
(1) (2) Pelinovsky, E., Choi, B. H., Stromkov, A., Didenkulova, I. and Kim, H.-S. 2005. Analysis of tide-gauge records of the 1883 Krakatau tsunami. In Tsunamis: Case Studies and Recent Developments (ed. Satake, K.), pp. 57–78. Dordrecht: Springer.CrossRefGoogle Scholar
Pararas-Carayannis, G. 2003. Near and far-field effects of tsunamis generated by the paroxysmal eruptions, explosions, caldera collapses and massive slope failures of the Krakatau volcano in Indonesia on August 26–27, 1883. Science of Tsunami Hazards, 21, 191–211.Google Scholar
See extended discussion of the role of the air pressure wave in Murty (1977) [44] and also Garrett, C. J. R. 1970. A theory of the Krakatoa tide gauge disturbances. Tellus, 22, 43–52, .CrossRefGoogle Scholar
Ward, S. N. and Asphaug, E. 2000. Asteroid impact tsunami: a probabilistic hazard assessment. Icarus, 145, 64–78, .CrossRefGoogle Scholar
Schulte, P. et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327, 1214–1218, .CrossRefGoogle ScholarPubMed
Toon, O. B., Zahnle, K., Morrison, D., Turco, R. P. and Covey, C. 1997. Environmental perturbations caused by the impacts of asteroids and comets. Reviews of Geophysics, 35, 1, .CrossRefGoogle Scholar
Shoemaker, E. M. 1983. Asteroid and comet bombardment of the Earth. Annual Review of Earth and Planetary Sciences, 11, 461–94, .CrossRefGoogle Scholar
(1) Ward, S. N. and Asphaug, E. 2002. Impact tsunami: Eltanin. Deep-Sea Research II, 49, 1073–1079, . (2) Gisler, G., Weaver, R., Mader, C. and Gittings, M. L. 2003. Two- and three-dimensional simulations of asteroid ocean impacts. Science of Tsunami Hazards, 21, 119–134. (3) Weiss, R., Wünnemann, K. and Bahlburg, H. 2006. Numerical modelling of generation, propagation and runup of tsunamis caused by oceanic impacts: model strategy and technical solutions. Geophysical Journal International, 167, 77–88, doi:10.1111/j.1365-246X.2006.02889.x.CrossRefGoogle Scholar
MacDonald, L. M. 2005. Curse of the Narrows. New York: Walker and Company.Google Scholar
Rutley, J. I. A. 1959. The demolition of Ripple Rock. International Hydrographic Review, 36, 19–28.Google Scholar
Kowalik, Z., Knight, W., Logan, T. and Whitmore, P. 2007. The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure and Applied Geophysics, 164, 379–393, .CrossRefGoogle Scholar
Henry, R. F. and Foreman, M. G. G. 2001. A representation of tidal currents based on energy flux. Marine Geodesy, 24, 139–152, .CrossRefGoogle Scholar
Titov, V. V. and Synolakis, C. E. 1998. Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124, 157–171, and see also many references in .CrossRefGoogle Scholar
Lynett, P. J. 2009. Tsunami inundation, modeling of. In Encyclopedia of Complexity and Systems Science (ed. Myers, R. A.), pp. 9618–9631. Springer, .CrossRefGoogle Scholar
Ammon, C. J., Ji, C., Thio, H.-K. et al. 2005. Rupture process of the 2004 Sumatra-Andaman earthquake. Science, 308, 1133–1139, .CrossRefGoogle ScholarPubMed
Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E. and González, F. I. 2005. The global reach of the 26 December 2004 Sumatra tsunami. Science, 309, 2045–2048, .CrossRefGoogle ScholarPubMed
Fine, I. V., Rabinovich, A. B. and Thomson, R. E. 2005. The dual source region for the 2004 Sumatra tsunami. Geophysical Research Letters, 32, L16602, .CrossRefGoogle Scholar
Merrifield, M. A., Firing, Y. L., Aarup, T. et al. 2005. Tide gauge observations of the Indian Ocean tsunami, December 26, 2004. Geophysical Research Letters, 32, L09603, .CrossRefGoogle Scholar
(1) Gower, J. 2005. Jason 1 detects the 26 December 2004 tsunami. Eos, Transactions American Geophysical Union, 86, 37–38, . (2)Smith, W. H. F., Scharroo, R., Titov, V. V., Arcas, D. and Arbic, B. K. 2005. Ocean news: Satellite altimeters measure tsunami: early model estimates confirmed. Oceanography, 18(2), 11–13, doi:10.5670/oceanog.2005.62. (3) Song, Y. T., Ji, C., Fu, L.-L. et al. 2005. The 26 December 2004 tsunami source estimated from satellite radar altimetry and seismic waves. Geophysical Research Letters, 32, L20601, doi:10.1029/2005GL023683. (4) Ablain, M., Dorandeu, J., Le Traon, P-Y. and Sladen, A. 2006. High resolution altimetry reveals new characteristics of the December 2004 Indian Ocean tsunami. Geophysical Research Letters, 33, L21602, doi:10.1029/2006GL027533. (5) Hayashi, Y. 2008. Extracting the 2004 Indian Ocean tsunami signals from sea surface height data observed by satellite altimetry. Journal of Geophysical Research, 113, C01001, doi:10.1029/2007JC004177.CrossRefGoogle Scholar
França, C. A. S. and De Mesquita, A. R. 2007. The December 26th 2004 tsunami recorded along the southeastern Coast of Brazil. Natural Hazards, 40, 209–222, .CrossRefGoogle Scholar
Woodworth, P. L., Blackman, D. L., Foden, P. et al. 2005. Evidence for the Indonesian tsunami in British tidal records. Weather, 60, 263–267. .CrossRefGoogle Scholar
(1) Rabinovich, A. B., Thomson, R. E. and Stephenson, F. E. 2006. The Sumatra tsunami of 26 December 2004 as observed in the North Pacific and North Atlantic oceans. Surveys in Geophysics, 2, 647–677, . (2) Thomson, R. E., Rabinovich, A. B. and Krassovski, M. V. 2007. Double jeopardy: Concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophysical Research Letters, 34, L15607, doi:10.1029/2007GL030685.CrossRefGoogle Scholar
Candella, R. N., Rabinovich, A. B. and Thomson, R. E. 2008. The 2004 Sumatra tsunami as recorded on the Atlantic coast of South America. Advances in Geosciences, 14, 117–128, .CrossRefGoogle Scholar
Dragani, W. C., D’Onofrio, E. E., Grismeyer, W. and Fiore, M. E. 2006. Tide gauge observations of the Indian ocean tsunami, December 26, 2004, in Buenos Aires coastal waters, Argentina. Continental Shelf Research, 26, 1543–1550, .CrossRefGoogle Scholar
Joseph, A., Odametey, J. T., Nkebi, E. K. et al. 2006. The 26 December 2004 Sumatra tsunami recorded on the coast of West Africa. African Journal of Marine Science, 28(3–4), 705–712.CrossRefGoogle Scholar
Rabinovich, A. B., Woodworth, P. L. and Titov, V. V. 2011. Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage. Geophysical Research Letters, 38, L16604, .CrossRefGoogle Scholar
Stimpson, I. 2011. Japan’s Tohoku earthquake and tsunami. Geology Today, 27, 96–98.CrossRefGoogle Scholar
Grilli, S. T., Harris, J. C., Bakhsh, T. S. T. et al. 2013. Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: comparison to far- and near-field observations. Pure and Applied Geophysics, 170, 1333–1359, .CrossRefGoogle Scholar
Allan, J. C., Komar, P. D., Ruggiero, P. and Witter, R. 2012. The March 2011 Tōhoku tsunami and its impacts along the U. S. west coast. Journal of Coastal Research, 28(5), 1142–1153, .CrossRefGoogle Scholar
Kowalik, Z., Horrillo, J., Knight, W. and Logan, T. 2008. Kuril Islands tsunami of November 2006: 1. Impact at Crescent City by distant scattering. Journal of Geophysical Research, 113, C01020, .CrossRefGoogle Scholar
Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. 2011. Survey of 2011 Tohoku earthquake tsunami inundation and run-up. Geophysical Research Letters, 38, L00G14, .CrossRefGoogle Scholar
Private communication from Dr David Long, British Geological Survey.
Tsushima, H., Hirata, K., Hayashi, Y. et al. 2011. Near-field tsunami forecasting using offshore tsunami data from the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63, 821–826, .CrossRefGoogle Scholar
Wei, Y., Chamberlain, C., Titov, V. V., Tang, L. and Bernard, E. N. 2012. Modeling of the 2011 Japan tsunami: lessons for near-field forecast. Pure and Applied Geophysics, 170(6–8), 1309–1331. .CrossRefGoogle Scholar
Travel time charts and movies can be found at the NOAA Center for Tsunami Research web site and travel time charts also at .
González, F. I., Satake, K., Boss, E. F. and Mofjeld, H. O. 1995. Edge wave and non-trapped modes of the 25 April 1992 Cape Mendocino tsunami. Pure and Applied Geophysics, 144, 409–426, .CrossRefGoogle Scholar
Pattiaratchi, C. B. and Wijeratne, E. M. S. 2009. Tide gauge observations of 2004–2007 Indian Ocean tsunamis from Sri Lanka and Western Australia. Pure and Applied Geophysics, 166, 233–258, .CrossRefGoogle Scholar
Ioualalen, M., Asavanant, J., Kaewbanjak, N. et al. 2007. Modeling the 26 December 2004 Indian Ocean tsunami: case study of impact in Thailand. Journal of Geophysical Research, 112, C07024, .CrossRefGoogle Scholar
(1) Tadepalli, S. and Synolakis, C. E. 1994. The run-up of N-waves on sloping beaches. Proceedings of the Royal Society of London A, 445, 99–112, . (2) Tadepalli, S. and Synolakis, C. E. 1996. Model for the leading waves of tsunamis. Physical Review Letters, 77, 2141–2144, doi:10.1103/PhysRevLett.77.2141.CrossRefGoogle Scholar
Baba, T., Hirata, K. and Kaneda, Y. 2004. Tsunami magnitudes determined from ocean-bottom pressure gauge data around Japan. Geophysical Research Letters, 31, L08303, .CrossRefGoogle Scholar
Choi, B. H. and Imamura, F. (eds.) 2005. Sumatra tsunami on 26th December 2004. In Proceedings of the Special Asia Tsunami Session at the Asia and Pacific Coast (APAC) Conference, 4–8 September 2005, Jeju-do, Korea. Seoul: Hanrimwon Publishing Co.
Many tide gauge records from the Sumatra tsunami can be found at .
Okal, E. A. and Hartnady, C. J. 2009. The South Sandwich Islands earthquake of 27 June 1929: seismological study and inference on tsunami risk for the South Atlantic. South African Journal of Geology, 112, 359–370, .CrossRefGoogle Scholar
Milburn, H. B., Nakamura, A. I. and Gonzalez, F. I. 1996. Real-time tsunami reporting from the deep ocean. Proceedings of the Oceans ’96 MTS/IEEE Conference, Fort Lauderdale, Florida, 23–26 September 1996. Available from .Google Scholar
This section is based on work undertaken for the European Union TRANSFER project .
Woodworth, P. L., Rickards, L. J. and Pérez, B. 2009. A survey of European sea level infrastructure. Natural Hazards and Earth System Science, 9, 927–934, .CrossRefGoogle Scholar
For example, for a discussion of the need for data exchange along the Atlantic coastline see: Defra, , 2005. The Threat Posed by Tsunami to the UK (ed. Kerridge, D.). Study commissioned by Defra Flood Management and produced by British Geological Survey, Proudman Oceanographic Laboratory, Met Office and HR Wallingford.
WMO, 2004. Manual on the Global Telecommunications System. Volume 1: Global Aspects. Volume 2: Regional Aspects. World Meteorological Organization report 386. .
Holgate, S. J., Foden, P. and Pugh, J. 2007. Tsunami monitoring system: implementing global real time telemetry. Sea Technology, 48(3), 37–40.Google Scholar
Holgate, S., Foden, P., Pugh, J. and Woodworth, P. 2008. Real time sea level data transmission from tide gauges for tsunami monitoring and long term sea level rise observations. Journal of Operational Oceanography, 1, 3–8.CrossRefGoogle Scholar
Holgate, S. J., Woodworth, P. L., Foden, P. R. and Pugh, J. 2008. A study of delays in making tide gauge data available to tsunami warning centres. Journal of Atmospheric and Oceanic Technology, 25, 475–481, .CrossRefGoogle Scholar
(1) Horsburgh, K. J., Bradley, L., Angus, M. et al. 2009. High Frequency Sea Level Recording for Tsunami Warning and Enhanced Storm Surge Monitoring at UK Sites. Proudman Oceanographic Laboratory, Internal Document 190. (2) Bressan, L. and Tinti, S. 2012. Detecting the 11 March 2011 Tohoku tsunami arrival on sea-level records in the Pacific Ocean: application and performance of the Tsunami Early Detection Algorithm (TEDA). Natural Hazards and Earth System Sciences, 12, 1583–1606, . (3) Software developed through the European Union TRANSFER project by Puertos del Estado in Spain is now being applied to 1-minute sampling and latency data across the REDMAR network: see .CrossRefGoogle Scholar
As demonstrated by the OGP/JCOMM/WCRP Workshop on Climate Change and the Offshore Industry at the World Meteorological Organization, Geneva, 27–29 May 2008.
See the German–Indonesian Tsunami Early Warning System pages .
Cummins, P. R. 2007. The potential for giant tsunamigenic earthquakes in the northern Bay of Bengal. Nature, 449, 75–78, .CrossRefGoogle ScholarPubMed
Neetu, S., Suresh, I., Shankar, R. et al. 2011. Trapped waves of the 27 November 1945 Makran tsunami: observations and numerical modeling. Natural Hazards, 59, 1609–1618, .CrossRefGoogle Scholar
Alasset, P.-J., Hébert, H., Maouche, S., Calbini, V. and Meghraoui, M. 2006. The tsunami induced by the 2003 Zemmouri earthquake (Mw = 6.9, Algeria): modelling and results. Geophysical Journal International, 166, 213–226, .CrossRefGoogle Scholar
Schindelé, F., Loevenbruck, A. and Hébert, H. 2008. Strategy to design the sea-level monitoring networks for small tsunamigenic oceanic basins: theWestern Mediterranean case. Natural Hazards and Earth System Sciences, 8, 1019–1027, .CrossRefGoogle Scholar
Tsushima, H., Hino, R., Fujimoto, H. and Tanioka, Y. 2007. Application of cabled offshore ocean bottom tsunami gauge data for real-time tsunami forecasting. Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. Symposium 17–20 April 2007, pp. 612–620.Google Scholar
Kato, T., Terada, Y., Nishimura, H., Nagai, T. and Koshimura, S. 2011. Tsunami records due to the 2010 Chile Earthquake observed by GPS buoys established along the Pacific coast of Japan. Earth, Planets and Space, 63, e5-e8, .CrossRefGoogle Scholar
Hayashi, Y., Tsushima, H., Hirata, K., Kimura, K. and Maeda, K. 2011. Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations. Earth, Planets and Space, 63, 809–813, .CrossRefGoogle Scholar
Foster, J. H., Brooks, B. A., Wang, D., Carter, G. S. and Merrifield, M. A. 2012. Improving tsunami warning using commercial ships. Geophysical Research Letters, 39, L09603, .CrossRefGoogle Scholar
(1) Löfgren, J. S., Haas, R., Scherneck, H.-G. and Bos, M. S. 2011. Three months of local sea level derived from reflected GNSS signals. Radio Science, 46, RS0C05, . (2) Larson, K. M., Löfgren, J. and Haas, R. 2013. Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301–1310, .CrossRefGoogle Scholar
Helm, A., Stosius, R., Montenbruck, O. et al. 2008. Utilizing ocean reflected GPS L1 C/A and the new GPS L2C signals for tsunami detection from space: possible small satellite constellations and the GORS instrument. International Conference on Tsunami Warning (ICTW), Bali, Indonesia, November 12–14, 2008.Google Scholar
Essen, H.-H., Gurgel, K.-W. and Schlick, T. 2000. On the accuracy of current measurements by means of HF radar. IEEE Journal of Oceanic Engineering, 25, 472–480, .CrossRefGoogle Scholar
Lipa, B. J., Barrick, D. E., Bourg, J. and Nyden, B. D. 2006. HF radar detection of tsunamis. Journal of Oceanography, 62, 705–716.CrossRefGoogle Scholar
Lipa, B., Isaacson, J., Nyden, B. and Barrick, D. 2012. Tsunami arrival detection with high frequency (HF) radar. Remote Sensing, 4, 1448–1461, .CrossRefGoogle Scholar
Börner, T., Galletti, M., Marquart, N. P. and Krieger, G. 2010. Concept study of radar sensors for near-field tsunami early warning. Natural Hazards and Earth System Sciences, 10, 1957–1964, .CrossRefGoogle Scholar
Song, Y. T., Fukumori, I., Shum, C. K. and Yi, Y. 2012. Merging tsunamis of the 2011 Tohoku-Oki earthquake detected over the open ocean. Geophysical Research Letters, 39, L05606, .CrossRefGoogle Scholar
For example, see .
Hamlington, B. D., Leben, R. R., Godin, O. A. et al. 2012. Could satellite altimetry have improved early detection and warning of the 2011 Tohoku tsunami?Geophysical Research Letters, 39, L15605, .CrossRefGoogle Scholar
For example, see the Surface Water and Ocean Topography website .
Allan, T. 2005. Detecting tsunamis: calling in the satellites. Marine Scientist, 13, 12–14.Google Scholar
(1) Han, S.-C., Shum, C. K., Bevis, M., Ji, C. and Kuo, C.-Y. 2006. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science, 313, 658–662, . (2) Chen, J. L., Wilson, C. R., Tapley, B. D. and Grand, S. 2007. GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake. Geophysical Research Letters, 34, L13302, doi:10.1029/2007GL030356.CrossRefGoogle ScholarPubMed
Garces, M. and Le Pichon, A. 2009. Infrasound from earthquakes, tsunamis and volcanoes. In Encyclopedia of Complexity and Systems Science (ed. Myers, R. A.), pp. 663–679. Springer, .Google Scholar
Hanson, J. A. and Bowman, J. R. 2005. Dispersive and reflected tsunami signals from the 2004 Indian Ocean tsunami observed on hydrophones and seismic stations. Geophysical Research Letters, 32, L17606, .CrossRefGoogle Scholar
(1) Arai, N., Iwakuni, M., Watada, S. et al. 2011. Atmospheric boundary waves excited by the tsunami generation related to the 2011 great Tohoku-Oki earthquake. Geophysical Research Letters, 38, L00G18, . (2) Prior, M., Salzberg, D. and Brogan, R. 2011. Pressure signals on IMS hydrophones at Wake Island due to the M9.0 event on March 11th 2011 off the coast of Japan. Presentation JS-P1, in Book of Abstracts. Comprehensive Nuclear-Test-Ban Treaty: Science and Technology Conference, 8–10 June 2011, Vienna, Austria. Available from .CrossRefGoogle Scholar
Garcia, R. F., Bruinsma, S., Lognonné, P.Doornbos, E. and Cachoux, F. 2013. GOCE: The first seismometer in orbit around the Earth. Geophysical Research Letters, 40, 1015–1020, .CrossRefGoogle Scholar
Examples include Surveys in Geophysics, 27(6), 2006; Pure and Applied Geophysics, 168(6–7), 2011; Natural Hazards, 63(1), 2012.
Geist, E. L., Titov, V. V. and Synolakis, C. E. 2006. Tsunami: wave of change. Scientific American, 294, 56–63, .CrossRefGoogle Scholar
(1) Defra, , 2005. The Threat Posed by Tsunami to the UK (ed. Kerridge, D.). Study commissioned by Defra Flood Management and produced by British Geological Survey, Proudman Oceanographic Laboratory, Met Office and HR Wallingford. (2) DMI, 2005. Tsunami Risk Assessment for Danish, Faroes and Greenland Waters (eds. E. Buch et al.). Danish Meteorological Institute Technical Report No. 05–08.
Finkl, C. W., Pelinovsky, E. and Cathcart, R. B. 2012. A review of potential tsunami impacts to the Suez Canal. Journal of Coastal Research, 28, 745–759, .CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×