Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T00:01:45.166Z Has data issue: false hasContentIssue false

3 - Shoulder joint and inner ear of Tachypteron franzeni, an emballonurid bat from the Middle Eocene of Messel

Published online by Cambridge University Press:  05 June 2012

Gregg F. Gunnell
Affiliation:
Duke University, North Carolina
Nancy B. Simmons
Affiliation:
American Museum of Natural History, New York
Get access

Summary

Introduction

Over 600 Middle Eocene bat specimens have been excavated from the Messel pit (Grube Messel, near Darmstadt, Germany), and seven species have been described thus far. Many of the fossils are preserved as complete skeletons, often with soft body outlines and gut contents. Six of the bat species represent three extinct families, whereas Tachypteron franzeni can be assigned to the extant family Emballonuridae (Storch et al., 2002). T. franzeni is known only from two specimens; however, these are extraordinarily well preserved, including the shoulder joints and inner ears, so this had already been recognized in the original description of T. franzeni, and these close resemblances to extant emballonurids led to the conclusion that T. franzeni had already evolved similar bioacoustic specializations and a similar flight style to modern taxa.

The shoulder joints of bats are sophisticated structures showing remarkable morphological variation. Miller's (1907) investigations on the differentiations of the shoulder within the Microchiroptera were continued by the studies of other authors (Vaughan, 1970; Strickler, 1978; Hermanson and Altenbach, 1983).

Three different types of shoulder joint can be distinguished within the Chiroptera: the primitive morphology of the shoulder joint with a globular humeral head and corresponding glenoid cavity, as seen in Megachiroptera and Rhinopomatidae; a derived shoulder joint with an oblong humeral head and a single trough-like articular surface on the scapula, found in members of the superfamilies Emballonuroidea, Rhinolophoidea and Noctilionoidea; a derived shoulder joint with a secondary articulation between the tuberculum majus and a secondary articular facet on the dorsal side of the scapula, as seen in the remaining families. Their distribution within the order gives evidence of parallel evolution of the derived types (Schlosser-Sturm and Schliemann, 1995). The morphological modifications of the derived joints are interpreted as a functional response to a biomechanical demand connected with flight (Norberg, 2002), i.e., to limit pronation of the humerus during the downstroke of the wing beat cycle, realized in two different mechanical ways (Schlosser-Sturm, 1982; Altenbach, 1987; Schliemann and Schlosser-Sturm, 1999). Because movement restriction was described for the primitive type as well (Bergemann, 2003), functional interpretations are still a matter of controversy.

Type
Chapter
Information
Evolutionary History of Bats
Fossils, Molecules and Morphology
, pp. 67 - 104
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altenbach, J. S. 1979 Locomotor morphology of the vampire bat, Special Publication, American Society of Mammalogists 6 1Google Scholar
Altenbach, J. S. 1987 Bat flight muscle function and the scapulo-humeral lockRecent Advances in the Study of BatsFenton, M. B.Racey, P.Rayner, J. M. V.CambridgeCambridge University Press100Google Scholar
Bergemann, Y. 2003 Funktionsmorphologische Untersuchungen am Schultergelenk der Chiroptera mit besonderer Berücksichtigung der Megachiroptera und der RhinopomatidaeUniversity of HamburgGoogle Scholar
Currey, J. D. 1984 The Mechanical Adaptations of BonesPrinceton, NJPrinceton University PressCrossRefGoogle Scholar
Currey, J. D. 2006 Bones: Structure and MechanicsPrinceton, NJPrinceton University PressGoogle Scholar
Ding, M.Odgaard, A.Danielsen, C. C.Hvid, I. 2002 Mutual associations among microstructural, physical and mechanical properties of human cancellous boneJournal of Bone and Joint Surgery – British Volume 84B 900Google Scholar
Fajardo, R. J.Muller, R. 2001 Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomographyAmerican Journal of Physical Anthropology 115 327CrossRefGoogle ScholarPubMed
Fajardo, R. J.Ryan, T. M.Kappelman, J. 2002 Assessing the accuracy of high-resolution X-ray computed tomography of primate trabecular bone by comparisons with histological sectionsAmerican Journal of Physical Anthropology 118 1CrossRefGoogle ScholarPubMed
Fiedler, J. 1983 Molossus ater, Taphozous nudiventris, T. kachensis Megaderma lyraJohann Wolfgang Goethe-UniversitätGoogle Scholar
Franzen, J. L.Gingerich, P. D.Habersetzer, J. 2009 Complete primate skeleton from the middle Eocene of Messel in Germany: morphology and paleobiologyPLoS ONE 4 1CrossRefGoogle ScholarPubMed
Gunnell, G. F.Jacobs, B. F.Herendeen, P. S. 2003 Oldest placental mammal from Sub-Saharan Africa: Eocene microbat from Tanzania – evidence from early evolution of sophisticated echolocationPalaeontologia Electronica 5Google Scholar
Habersetzer, J. 1986 Vergleichende flügelmorphologische Untersuchungen an einer Fledermausgesellschaft in MaduraiBIONA Report 5: Bat Flight – FledermausflugNachtigall, W.StuttgartGustav Fischer Verlag75Google Scholar
Habersetzer, J. 1998 Tomographieverfahren und Anordnung zur Erzeugung von großflächigen Tomogrammen (Aktenzeichen 19542762.9–52Forschungsinstitut Senckenberg, Senckenberganlage 25, 60325 FrankfurtMünchenDeutsches Patentamt1Google Scholar
Habersetzer, J.Storch, G. 1987 Klassifikation und funktionelle Flügelmorphologie paläogener Fledermäuse (Mammalia, Chiroptera). Forschungsergebnisse zu den Grabungen in der Grube Messel bei DarmstadtCourier Forschungsinstitut Senckenberg 91 117Google Scholar
Habersetzer, J.Storch, G. 1992 Cochlea size in extant Chiroptera and Middle Eocene microchiropterans from MesselNaturwissenschaften 79 462CrossRefGoogle Scholar
Habersetzer, J.Scherf, H.Beckmann, F.Seidel, R. 2004 3-D-Animation knöcherner Gesamtskelette und mikro-tomographischer Skelettdetails von Fossilien aus der Grube MesselCourier Forschungsinstitut Senckenberg 252 237Google Scholar
Habersetzer, J.Storch, G.Schlosser-Sturm, , E.Sigé, B. 2007 Shoulder joints and inner ears of , an emballonurid bat from the Middle Eocene of MesselJournal of Vertebrate Paleontology 27 85AGoogle Scholar
Helversen, O. V. 1986 Blütenbesuch bei Blumenfledermäusen: Kinematik des Schwirrfluges und Energiebudget im FreilandBIONA Report 5: Bat Flight – FledermausflugNachtigall, W.StuttgartGustav Fischer Verlag107Google Scholar
Hermanson, J. W.Altenbach, J. S. 1983 The functional anatomy of the shoulder of the pallid bat, Journal of Mammalogy 64 62CrossRefGoogle Scholar
Ito, M.Nishida, A.Koga, A. 2002 Contribution of trabecular and cortical components to the mechanical properties of bone and their regulating parametersBone 31 351CrossRefGoogle ScholarPubMed
Kastner, J.Heim, D.Salaberger, D.Sauerwein, C.Simon, M. 2006 Advanced applications of computed tomography by combination of different methodsEuropean Congress of Non-Destructive-Testing1Google Scholar
Kirkpatrick, S. J. 1994 Scale effects on the stresses and safety factors in the wing bones of birds and batsJournal of Experimental Biology 190 195Google ScholarPubMed
Koenigswald, W. V.Ruf, I.Gingerich, P. D. 2009 Cranial morphology of a new apatemyid, n. gen. n. sp. (Mammalia, Apatotheria) from the late Eocene of southern FrancePalaeontographica – Beiträge zur Naturgeschichte der Vorzeit 288 53Google Scholar
Kraus, H. J. 1983 Rhinopoma hardwickei, Hipposideros speoris Hipposideros fulvus Johann Wolfgang Goethe-UniversitätGoogle Scholar
Lareida, A.Beckmann, F.Schrott-Fischer, A. 2009 High-resolution X-ray tomography of the human inner ear: synchrotron radiation-based study of nerve fibre bundles, membranes and ganglion cellsJournal of Microscopy 234 95CrossRefGoogle ScholarPubMed
Lim, D. Y.Seliktar, R.Wee, J. Y.Tom, J.Nunes, L. 2006 The effect of the loading condition corresponding to functional shoulder activities on trabecular architecture of glenoidJournal of Biomechanical Engineering – Transactions of the ASME 128 250CrossRefGoogle ScholarPubMed
Marimuthu, G.Habersetzer, J.Leippert, D. 1995 Active acoustic gleaning from the water surface by the Indian false vampire bat, Ethology 99 61CrossRefGoogle Scholar
Miller, G. S. 1907 The families and genera of batsBulletin of the United States National Museum 57 1Google Scholar
Norberg, U. M. 1976 Aerodynamics, kinematics and energetics of horizontal flapping flight in the long-eared bat Journal of Experimental Biology 65 179Google ScholarPubMed
Norberg, U. M. 2002 Structure, form, and function of flight in engineering and the living worldJournal of Morphology 252 52CrossRefGoogle Scholar
Norberg, U. M.Rayner, J. M. V. 1987 Ecological morphology and flight in bats: wing adaptations, flight performance, foraging strategy and echolocationPhilosophical Transactions of the Royal Society of London B 316 335CrossRefGoogle Scholar
Odgaard, A. 2001 Quantification of cancellous bone architectureBone Mechanics HandbookCowin, S. C.Boca Raton, FLCRC Press14.01Google Scholar
Rogers, R. R.LaBarbera, M. 1993 Contribution of internal bony trabeculae to the mechanical properties of the humerus of the pigeon ()Journal of Zoology 230 433CrossRefGoogle Scholar
Ruf, I.Luo, Z. X.Wible, J. R.Martin, T. 2009 Petrosal anatomy and inner ear structures of the Late Jurassic (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammalsJournal of Anatomy 214 679CrossRefGoogle ScholarPubMed
Schliemann, H.Schlosser-Sturm, E. 1999 The shoulder joint of the Chiroptera – morphological features and functional significanceZoologischer Anzeiger 238 75Google Scholar
Schlosser-Sturm, E. 1982 Zur Funktion und Bedeutung des sekundären Schultergelenks der MicrochiropterenZeitschrift für Säugetierkunde 47 253Google Scholar
Schlosser-Sturm, E.Schliemann, H. 1995 Morphology and function of the shoulder joint of bats (Mammalia: Chiroptera)Journal of Zoological Systematics and Evolutionary Research 33 88CrossRefGoogle Scholar
Simmons, N. B.Geisler, J. H. 1998 Phylogenetic relationships of , and to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in MicrochiropteraBulletin of the American Museum of Natural History 235 4Google Scholar
Simmons, N. B.Seymour, K. L.Habersetzer, J.Gunnell, G. F. 2008 Primitive early Eocene bat from Wyoming and the evolution of flight and echolocationNature 451 818CrossRefGoogle ScholarPubMed
Smith, K. T.Rieppel, O.Habersetzer, J. 2008 A complete necrosaur (Squamata: Anguimorpha) from the middle Eocene lagerstätte of Messel, GermanyJournal of Vertebrate Paleontology 28 144AGoogle Scholar
Stauber, M.Rapillard, L.Vanlenthe, G. H.Zysset, P.Muller, R. 2006 Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffnessJournal of Bone and Mineral Research 21 586CrossRefGoogle ScholarPubMed
Storch, G.Sigé, B.Habersetzer, J. 2002 n. gen., n. sp., earliest emballonurid bat from the Middle Eocene of Messel (Mammalia, Chiroptera)Paläontologische Zeitschrift 76 189CrossRefGoogle Scholar
Strickler, T. L. 1978 Functional Osteology and Myology of the Shoulder in the ChiropteraBasel and New YorkKarger VerlagGoogle Scholar
Swartz, S. M.Parker, A.Huo, C. 1998 Theoretical and empirical scaling patterns and topological homology in bone trabeculaeJournal of Experimental Biology 201 573Google ScholarPubMed
Vaughan, T. A. 1970 The skeletal systemBiology of Bats 1Wimsatt, W. A.New YorkAcademic Press97CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×