Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T23:09:49.725Z Has data issue: false hasContentIssue false

13 - Introduction to regularization, renormalization, and radiative corrections

Published online by Cambridge University Press:  05 June 2012

Tommy Ohlsson
Affiliation:
KTH Royal Institute of Technology, Stockholm
Get access

Summary

In the previous chapter, we investigated elementary processes in QED and calculated cross-sections to lowest order in perturbation theory. Taking higher orders into account, one will obtain corrections of the order of the Sommerfeld fine-structure constant α to the lowest-order results. However, performing such calculations, one will encounter divergent integrals. Nevertheless, we will try to remedy this situation in three steps. First, we want to regularize the theory, which means that we modify the theory in order to keep it finite and well-defined to all orders in perturbation theory. This step is called regularization for which there are several methods. Specific methods of regularization include: Pauli–Villars regularization, dimensional regularization, lattice regularization, Riemann's ξ-function regularization, etc. Here, we will mainly investigate Pauli–Villars regularization and dimensional regularization. Second, we recognize that the non-interacting particles (i.e. the free asymptotic fields) are not identical to the real physical particles that interact. Thus, the interactions modify the properties of the particles such as the masses and the charges. Of course, all the relevant predictions of the theory must be expressed in terms of the properties of the physical particles and not the noninteracting (or bare) particles. This step is called renormalization. Third, we have to revert from the regularized theory back to QED, and thus, the infinities of QED will appear in the relations between the bare and physical particles. Of course, these relations as well as the bare particles are completely unobservable.

Type
Chapter
Information
Relativistic Quantum Physics
From Advanced Quantum Mechanics to Introductory Quantum Field Theory
, pp. 257 - 277
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×