Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T14:54:11.552Z Has data issue: false hasContentIssue false

8 - Maxwell's equations and quantization of the electromagnetic field

Published online by Cambridge University Press:  05 June 2012

Tommy Ohlsson
Affiliation:
KTH Royal Institute of Technology, Stockholm
Get access

Summary

In 1861, J. C. Maxwell published a theoretical and important work on electromagnetism. Indeed, this work contains essentially the equations that today are known as Maxwell's equations. These equations, together with the Lorentz force law F = q(E + v × B), constitute the complete set of laws for classical electromagnetism. An important property of Maxwell's equations is that they are Lorentz covariant. However, classical electromagnetism is, of course, non-quantized, as the prefix ‘classical’ suggests. Later on, in 1900, M. Planck introduced the concept of quantization of radiation that can be studied by using emission of radiation from heated bodies, which has become known as black-body radiation. Thus, the idea of quantization was born by Planck's discovery. Then, in 1905, Einstein introduced the concept of ‘quanta of light’, since the quantum nature of light was revealed by the photoelectric effect that was claimed by himself. In addition, the quanta of light were dubbed photons.

In this chapter, we will first present Maxwell's equations, we will then discuss different gauges and quantization of the electromagnetic field, we will next consider the Casimir effect that arises when quantizing the electromagnetic field, and finally, we will try to obtain a covariant quantization of the electromagnetic field.

Type
Chapter
Information
Relativistic Quantum Physics
From Advanced Quantum Mechanics to Introductory Quantum Field Theory
, pp. 155 - 175
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×