Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-15T13:03:50.464Z Has data issue: false hasContentIssue false

12 - Radio astrometry

from Part III - Observing through the atmosphere

Published online by Cambridge University Press:  05 December 2012

William F. van Altena
Affiliation:
Yale University, Connecticut
Get access

Summary

Introduction

Astrometry is the branch of astronomy that studies the position and motion of celestial objects in the Solar System, in the Milky Way Galaxy, and for galaxies that are near the limit of the observable Universe. In radio astronomy, the study can be separated into microastrometry and macro-astrometry. Micro-astrometry deals with the motion of individual or a small number of associated objects in order to determine their space motion, their distance from the Solar System, and their kinetic properties with respect to neighboring stars and planets. The observational techniques and reductions measure the separation of the target object from a nearby calibrator radio source with known and stable properties.

Macro-astrometry, on the other hand, deals with the absolute position of radio sources, which also requires the determination of the Earth's deformations, complex rotations, and space motion. This type of astrometric experiment observes many well-known compact radio sources over the sky within a 24-hour period. From the analysis of systematic residuals in the data, the absolute positions of the sources, as well as the astrometric and geodetic properties the Earth, are determined. From this 30+ year effort, the fundamental celestial inertial frame has been defined to an accuracy of about 0.01 milliarcsec (mas) using the position of nearly 300 radio sources.

For nearly 30 years, the highest astrometric precision has been obtained using radio-interferometric techniques because of several properties of radio waves. First, astronomers and engineers have been able to connect arrays of radio telescopes that span the Earth (even into Earth orbit) to achieve resolutions of a few mas and obtain positional accuracies well under 1 mas.

Type
Chapter
Information
Astrometry for Astrophysics
Methods, Models, and Applications
, pp. 175 - 198
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argon, A. L., Greenhill, L. J., Reid, M. J., Moran, J. M., and Humphreys, E. M. L. (2007). ApJ, 659, 1040.Google Scholar
Asaki, Y., Sudou, H., Kono, Y., et al. (2007). PASJ, 59, 397.CrossRef
Beasley, A. J. and Conway, J. E. (1995). ASP conf. Ser., 82, 327.
Bietenholz, M. F., Bartel, N., and Rupen, M. P. (2004). ApJ, 615, 173–180.Google Scholar
Born, M. and Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge: Cambridge University.CrossRefGoogle Scholar
Brisken, W. F., Benson, J. M., Beasley, A. J., et al. (2000). ApJ, 541, 959.Google Scholar
Charlot, P. (2004). IVS 2004 General Meeting Proceedings, Ottawa, Canada, February 9–11, pp. 12–21. See http://ivscc.gsfc.nasa.gov/publications/gm2004/charlot/Google Scholar
Clark, T. A., Corey, B. E., Davis, J. L., et al. (1985). IEEE Trans. Geosci. Remote Sensing, GE-23, 391–397.Google Scholar
Chatterjee, S., Ma, C., Arias, E. F., et al. (2009). ApJ, 698, 250.Google Scholar
Fey, A. L., Briskin, W. F., Vlemmings, W. H. T., et al. (2004). AJ, 127, 3587.Google Scholar
Fey, A. L., Gordon, D., and Jacobs, C. S., eds. (2009). IERS Technical Note 35, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. See http://www.iers.org/MainDisp.csl?pid=46-1100252.
Fomalont, E. B. and Kopeikin, S. M. (2003). ApJ, 598, 704.Google Scholar
Fomalont, E. B., Kopeikin, S. M., Lanyi, G., and Benson, J. M. (2009). ApJ, 699, 1395.Google Scholar
Fomalont, E. B., Johnston, K. J., Fey, A., et al. (2011). AJ, 141, 91.CrossRef
Haas, R. (2006). IVS 2006 General Meeting Proceedings, Concepción, Chile, January 9–11. See http://ivscc.gsfc.nasa.gov/publications/gm2006/haas.
Herring, T. A., Davis, J. L., and Shapiro, I. I. (1990). J. Geophys. Res., 95, 12561.CrossRef
Kim, M. K., Hirota, T., Honma, M., et al. (2008). PASJ, 60, 991–999.CrossRef
Kovalev, Y. Y., Lobanov, A. P., Pushkarev, A. B., and Zensus, J. A. (2008). A&A, 493, 759.Google Scholar
Kovalevsky, J. and Seidelmann, P. K. (2004). Fundamentals of Astrometry, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lanyi, G. (1984). TDAPR, 78, 152.
Lovell, J. E. J., Rickett, B. J., Macquart, J. P., et al. (2008). ApJ, 689, 108.Google Scholar
Ma, C., Arias, E. F., Eubanks, T. M., et al. (1998). AJ, 116, 516.CrossRef
Niell, A. (2006). IVS 2006 General Meeting Proceedings, Concepción, Chile, January 9–11. See http://ivscc.gsfc.nasa.gov/publications/gm2006/niell.
Nikolic, B., Richer, J., Bolton, R., and Hills, R. (2011). The Messenger, 143, 11.
Ohja, R., Fey, A. L., Charlot, P., et al. (2005). AJ, 130, 2529.
,PASJ (2008). Publ Astr. Soc. Jn., 60, No. 5.
Petrov, L., Kovalev, Y. Y., Fomalont, E., and Gordon, D. (2008). AJ, 136, 580.CrossRef
Petrov, L., Phillips, C., Bertarini, A., Murphy, T., and Sadler, E. M. (2011). MNRAS, 414, 2528.Google Scholar
Pradel, N., Charlot, P., and Lestrade, J.-F. (2006). A&A, 452, 1099.Google Scholar
Readhead, A. C. S., Walker, R. C., Pearson, T. J., and Cohen, M. H. (1980). Nature, 285, 137.CrossRef
Reid, M. J. and Brunthaler, A. (2004). ApJ, 616, 872.Google Scholar
Reid, M. J., Menton, K. M., Brunthaler, A., et al. (2009). ApJ, 693, 397.Google Scholar
Rogers, A. R. R. (1970). Radio Science, 5, 1289.
Shepherd, M. C., Pearson, J. J., and Taylor, G. B. (1994). BAAS, 26, 987.
Sovers, J., Fanselow, J. L., and Jacobs, C. S. (1998). Reviews of Modern Physics, 70, 1393.CrossRef
Sovers, J., Jacobs, S., and Lanyi, G. E. (2004). IVS 2004 General Meeting Proceedings, Ottawa, Canada, February 9–11. See http://ivscc.gsfc.nasa.gov/publications/gm2004/sovers.
Taylor, G. B., Carilli, C. L., and Perley, R. A. (2003). Synthesis imaging in radio astronomy II. ASP Conf. Ser., 180. (TCP)Google Scholar
Thompson, A. R.,Moran, J. M., and Swenson, G.W. Jr. (2001). Interferometry and Synthesis in Radio Astronomy, 2nd edn. New York, NY: John Wiley & Sons. (TMS)CrossRefGoogle Scholar
Titov, O. (2006). IVS 2006 General Meeting Proceedings, Concepción, Chile, January 9–11. See http://ivscc.gsfc.nasa.gov/publications/gm2006/titov.
Verbiest, J. P. W., Bailes, M., van Straten, W., et al. (2008). ApJ, 679, 675–680.Google Scholar
Walter, Hans G. and Sovers, O. (2000). Astrometry of Fundamental Catalogs. Heidelberg: Springer.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×