Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-16T22:13:44.505Z Has data issue: false hasContentIssue false

10 - Astrometry with ground-based diffraction-limited imaging

from Part III - Observing through the atmosphere

Published online by Cambridge University Press:  05 December 2012

Andrea Ghez
Affiliation:
University of Califor nia Los Angeles
William F. van Altena
Affiliation:
Yale University, Connecticut
Get access

Summary

Introduction

The construction of large ground-based optical and infrared telescopes is driven by the desire to obtain astronomical measurements of both higher sensitivity and higher angular resolution. With each increase in telescope diameter the former goal, that of increased sensitivity, has been achieved. In contrast, the angular resolution of large telescopes (D > 1m), using traditional imaging, is limited not by the diffraction limit (θ ∼ λ/D), but rather by turbulence in the atmosphere. This is typically 1″, a factor of 10–20 times worse than the theoretical limit of a 4-meter telescope at near-infrared wavelengths. This angular resolution handicap has led to both space-based and ground-based solutions. With the launching of the Hubble Space Telescope (HST), a 2.4-m telescope equipped with both optical and infrared detectors, the astronomical community has obtained diffraction-limited images. These optical images, which have an angular resolution of ˜0.″1, have led to exciting new discoveries, such as the detection of a black hole in M87 (Ford et al. 1994) and protostellar disks around young stars in Orion (O'Dell et al. 1993, O'Dell and Wen 1994). However, HST has a modest-sized mirror diameter compared to the 8–10 meter mirror diameters of the largest ground-based telescope facilities.

With the development of techniques to overcome the wavefront distortions introduced by the Earth's atmosphere, diffraction-limited observations from the ground have become possible. These techniques cover a wide range of complexity and hence expense. Speckle imaging, which provided the earliest and simplest approach, is described in Sections 10.1 and 23.3.1 and adaptive optics, which has more recently become scientifically productive and which is a much more powerful technique, is discussed in Section 10.2.

Type
Chapter
Information
Astrometry for Astrophysics
Methods, Models, and Applications
, pp. 142 - 153
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, H. W. (1953). The possibility of compensating astronomical seeing. PASP, 65, 229.CrossRefGoogle Scholar
Balega, I. I. and Balega, Y. Y. (1988). Binary star measurements using digital speckle interferometer of 6-m telescope. JPRS Rep. Sci. Technol. USSR Space, 6, 508.Google Scholar
Balega, I. I., Balega, Y. Y., Hofmann, K.-H., et al. (2002). Speckle interferometry of nearby multiple stars. A&A, 385, 87.Google Scholar
Balega, I. I., Balega, Y. Y., Hofmann, K.-H., et al. (2006). Orbits of new Hipparcos binaries. II. A&A, 448, 703.Google Scholar
Brandner, W. and Koehler, R. (1998). Star formation environments and the distribution of binary separations. ApJ Lett, 499, 79.Google Scholar
Brandner, W., Alcala, J. M., Kunkel, M., Moneti, A., and Zinnecker, H. (1996). Multiplicity among T Tauri stars in OB and T associations. Implications for binary star formation. A&A, 307, 121.Google Scholar
Cady, E., Macintosh, B., Kasdin, N. J., and Soummer, R. (2009). Shared pupil design for the Gemini Planet Imager. ApJ, 698, 938.Google Scholar
Cameron, P. B., Britton, M. C., and Kulkarni, S. R. (2009). Precision astrometry with adaptive optics. AJ, 137, 83.CrossRefGoogle Scholar
Do, T., Ghez, A. M., Morris, M. R., Yelda, S., et al. (2009a). A near-infrared variability study of the Galactic black hole: a red noise source with NO detected periodicity. ApJ, 691, 1021.Google Scholar
Do, T., Ghez, A., Morris, M. R., Lu, J. R., et al. (2009b). High angular resolution integralfield spectroscopy of the Galaxy's nuclear cluster: a missing stellar cusp?ApJ, 703, 1323.Google Scholar
Douglass, G. G., Hindsley, R. B., and Worley, C. E. (1997). Speckle interferometry at the US Naval Observatory. I. ApJ S, 111, 289.CrossRefGoogle Scholar
Duchêne, G., Beust, H., Adjali, F., Konopacky, Q. M., and Ghez, A. M. (2006). Accurate stellar masses in the multiple system T Tauri. A&A, 457, L9.Google Scholar
Dupuy, T. J., Liu, M. C., and Ireland, M. J. (2009). Dynamical mass of the substellar benchmark binary HD 130948BC. ApJ, 692, 729.Google Scholar
Dyck, H. M., Simon, T., and Zuckerman, B. (1982). Discovery of an infrared companion to T Tauri. ApJ Lett, 255, 103.CrossRefGoogle Scholar
Eckart, A. and Genzel, R. (1997). Stellar proper motions in the central 0.1 pc of the Galaxy. MNRAS, 284, 576.CrossRefGoogle Scholar
Eckart, A., Genzel, R., Ott, T., and Schödel, R. (2002). Stellar orbits near Sagittarius A*. MNRAS, 331, 917.CrossRefGoogle Scholar
Eckart, A., Baganoff, F. K., Schödel, R., et al. (2006). The flare activity of Sagittarius A*: new coordinated mm to X-ray observations. A&A, 450, 535.Google Scholar
Eisenhauer, F., Genzel, R., Alexander, T., et al. (2005). SINFONI in the Galactic center: young stars and infrared flares in the central light-month. ApJ, 628, 246.Google Scholar
Ford, H. C., et al. (1994). Narrowband HST images of M87: evidence for a disk of ionized gas around a massive black hole. ApJ Lett, 435, L27.Google Scholar
Fried, D. L. (1966). Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Optical Soc. America (1917–1983), 56, 1372.CrossRefGoogle Scholar
Frogel, J. A., Alcock, C., Bolte, M., et al. (2009). Frontier science and adaptive optics on existing and next-generation telescopes. Astro 2010: The Astronomy and Astrophysics Decadal Survey, Position Papers, no. 16.
Fugate, R. Q., et al. (1994). J. Opt. Soc. Am.A, 11, 310.CrossRef
Genzel, R., Eckart, A., Ott, T., and Eisenhauer, F. (1997). On the nature of the dark mass in the centre of the Milky Way. MNRAS, 291, 219.CrossRefGoogle Scholar
Genzel, R., Schödel, R., Ott, T., et al. (2003). Near-infared flares from accreting gas around the supermassive black hole at the Galactic centre. Nature, 425, 934.Google Scholar
Ghez, A. M., Neugebauer, G., and Matthews, K. (1993). The multiplicity of T Tauri stars in the star forming regions Taurus–Auriga and Ophiuchus–Scoprius: a 2.2 micron speckle imaging survey. AJ, 106, 2005.CrossRefGoogle Scholar
Ghez, A. M., Weinberger, A. J., Neugebauer, G., Matthews, K., and McCarthy, D. W. Jr., (1995). Speckle imaging measurements of the relative tangential velocities of the components of T Tauri binary stars. AJ, 110, 753.CrossRefGoogle Scholar
Ghez, A. M., McCarthy, D. W., Patience, J. L., and Beck, T. L. (1997). The multiplicity of pre-main-sequence stars in southern star-forming regions. ApJ, 481, 378.Google Scholar
Ghez, A. M., Klein, B. L., Morris, M., and Becklin, E. E. (1998). High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our Galaxy. ApJ, 509, 678.Google Scholar
Ghez, A. M., Morris, M., Becklin, E. E., Tanner, A., and Kremenek, T. (2000). The accelerations of stars orbiting the Milky Way's central black hole. Nature, 407, 349.Google Scholar
Ghez, A. M., Duchene, G., Matthews, K., et al. (2003). The first measurement of spectral lines in a short-period star bound to the Galaxy's central black hole: a paradox of youth. ApJ Lett, 586, L127.Google Scholar
Ghez, A. M., Wright, S. A., Matthews, K., et al. (2004). Variable infrared emission from the supermassive black hole at the center of the Milky Way. ApJ Lett, 601, L159.Google Scholar
Ghez, A. M., Salim, S., Hornstein, S. D., et al. (2005a). Stellar orbits around the Galactic center. ApJ, 620, 744.Google Scholar
Ghez, A. M., Hornstein, S. D., Lu, J. R., et al. (2005b). The first laser guide star adaptive optics observations of the Galactic center: Sgr A*'s infrared color and the extended red emission in its vicinity. ApJ, 635, 1087.Google Scholar
Ghez, A., Salim, S., Weinberg, N. N., et al. (2008). Measuring distance and properties of the Milky Way's central supermassive black hole with stellar orbits. ApJ, 689, 1044.Google Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., et al. (2009). Monitoring stellar orbits around the massive black hole in the Galactic center. ApJ, 692, 1075.Google Scholar
Haller, J.W., Rieke, M. J., Rieke, G. H., et al. (1996). Stellar kinematics and the black hole in the Galactic center. ApJ, 456, 194.Google Scholar
Hardy, J. W. (1991). Adaptive optics – a progress review. Proc. SPIE, 1542, 2.Google Scholar
Hartkopf, W. I., McAlister, H. A., and Franz, O. G. (1989). Binary star orbits from speckle interferometry. II – Combined visual–speckle orbits of 28 close systems. AJ, 98, 1014.CrossRefGoogle Scholar
Henry, T. J. and McCarthy, D.W. Jr., (1990). A systematic search for brown dwarfs orbiting nearby stars. ApJ, 350, 334.CrossRefGoogle Scholar
Henry, T. J. and McCarthy, D. W. Jr., (1993). The mass-luminosity for stars of mass 1.0 to 0.08 solar mass. AJ, 106, 773.CrossRefGoogle Scholar
Hornstein, S. D., Matthews, K., Ghez, A. M., et al. (2007). A constant spectral index for Sagittarius A* during infrared/X-ray intensity variations. ApJ, 667, 900.Google Scholar
Köhler, R., Kunkel, M., Leinert, C., and Zinnecker, H. (2000). Multiplicity of X-ray selected T Tauri stars in the Scorpius–Centaurus OB association. A&A, 356, 541.Google Scholar
Konopacky, Q. M., Ghez, A. M., Barman, T. S., et al. (2010). High-precision dynamical masses of very low mass binaries. ApJ, 711, 1087.Google Scholar
Labeyrie, A. (1970). Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images. A&A, 6, 85.Google Scholar
Lacy, J. H., Townes, C. H., Geballe, T. R., and Hollenbach, D. J. (1980). Observations of the motion and distribution of the ionized gas in the central parsec of the Galaxy. II. ApJ, 241, 132.CrossRefGoogle Scholar
Leinert, C., Zinnecker, H., Weitzel, N., et al. (1993). A systematic approach for young binaries in Taurus. A&A, 278, 129.Google Scholar
Leinert, C., Richichi, A., and Haas, M. (1997a). Binaries among Herbig Ae/Be stars. A&A, 318, 472.Google Scholar
Leinert, C., Henry, T., Glindemann, A., and McCarthy, D. W. Jr., (1997b). A search for companions to nearby southern M dwarfs with near-infrared speckle interferometry. A&A, 325, 159.Google Scholar
Liu, M. C., Dupuy, T. J., and Ireland, M. J. (2008). Keck laser guide star adaptive optics monitoring of 2MASS J15344984-2952274AB: first dynamical determination of a binary T dwarf. ApJ, 689, 436.Google Scholar
Lohmann, A. W., Weigelt, G., and Wirnitzer, B. (1983). Speckle masking in astronomy – triple correlation theory and applications. Appl. Opt., 22, 4028.CrossRefGoogle ScholarPubMed
Lu, J. R., Ghez, A. M., Hornstein, S. D., Morris, M. R., Becklin, E. E., and Matthews, K. (2009). A disk of young stars at the Galactic center as determined by individual stellar orbits. ApJ, 690, 1463.Google Scholar
Maoz, D., Sternberg, A., and Ho, L. C. (1998). “Super star clusters” revealed in NICMOS images of circumnuclear rings. A&AS, 193, 7604.Google Scholar
Marois, C., Macintosh, B., Barman, T., et al. (2008). Direct imaging of multiple planets orbiting the star HR 8799. Science, 322, 1348.CrossRefGoogle ScholarPubMed
Mason, B. D., Douglass, G. G., and Hartkopf, W. I. (1999). Binary star orbits from speckle interferometry. I. Improved orbital elements of 22 visual systems. AJ, 117, 1023.CrossRefGoogle Scholar
Mason, B. D., Gies, D. R., Hartkopf, W. I., et al. (1998). ICCD speckle observations of binary stars. XIX – An astrometric/spectroscopic survey of O stars. AJ, 115, 821.CrossRefGoogle Scholar
Mason, B. D., Hartkopf, W. I., and Wycoff, G. L. (2008). Speckle interferometry at the US Naval Obervatory. XIV. AJ, 136, 2223.CrossRefGoogle Scholar
Max, C. E., Avicola, K., Brase, J. M., et al. (1994). Design, layout, and early results of a feasibility experiment for sodium-layer laser-guide-star adaptive optics. J. Opt. Soc. Am.A, 11, 813.CrossRefGoogle Scholar
Max, C. E., Olivier, S. S., Friedman, H. W., et al. (1997). Image improvement from a sodium-layer laser guide star adaptive optics system. Science, 277, 1649.CrossRefGoogle Scholar
McAlister, H. A. (1977). Speckle interferometric measurements of binary stars. I. ApJ, 215, 159.CrossRefGoogle Scholar
McAlister, H. A., Hartkopf, W. I., Hutter, D. J., and Franz, O. G. (1987). ICCD speckle observations of binary stars. II – Measurements during 1982–1985 from the Kitt Peak 4 m telescope. AJ, 93, 688.CrossRefGoogle Scholar
McAlister, H. A., Mason, B. D., Hartkopf, W. I., Roberts, L. C. Jr., and Shara, M. M. (1996). ICCD speckle observations of binary stars. XIV. A brief survey for duplicity among white dwarf stars. AJ, 112, 1169.CrossRefGoogle Scholar
McCarthy, D. W. Jr., Henry, T. J., McLeod, B., and Christou, J. C. (1991). The low-mass companion of Gliese 22A – first results of the Steward Observatory infrared speckle camera. AJ, 101, 214.CrossRefGoogle Scholar
McGinn, M. T., Sellgren, K., Becklin, E. E., and Hall, D. N. B. (1989). Stellar kinematics in the Galactic center. ApJ, 338, 824.CrossRefGoogle Scholar
Meyer, L., Do, T., Ghez, A., et al. (2008). A 600 minute near-infrared light curve of Sagittarius A*. ApJ Lett, 688, L17.Google Scholar
Moretti, A., Piotto, G., Arcidiacono, C., et al. (2009). MCAO near-IR photometry of the globular cluster NGC 7388: MAD observations in crowded fields. A&A, 493, 539.Google Scholar
O'Dell, C. R. and Wen, Z. (1994). Postrefurbishment mission Hubble Space Telescope images of the core of the Orion Nebula: Proplyds, Herbig-Haro objects, and measurements of a circumstellar disk. ApJ, 436, 194.Google Scholar
O'Dell, C. R., Wen, Z., and Hu, X. (1993). Discovery of new objects in the Orion nebula on HST images – shocks, compact sources, and protoplanetary disks. ApJ, 410, 696.Google Scholar
Patience, J., Ghez, A. M., Reid, I. N., Weinberger, A. J., and Matthews, K. (1998). The multiplicity of the Hyades and its implications for binary star formation and evolution. AJ, 115, 1972.CrossRefGoogle Scholar
Patience, J., Ghez, A. M., Reid, I. N., and Matthews, K. (2002). A high angular resolution multiplicity survey of the open clusters α Persi and Praesepe. AJ, 123, 1570.CrossRefGoogle Scholar
Paumard, T., Genzel, R., Martins, F., et al. (2006). The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation. ApJ, 643, 1011.Google Scholar
Peterson, D. M., and Solensky, R. (1988). 51 Tauri and the Hyades distance modulus. ApJ, 333, 256.CrossRefGoogle Scholar
Petr, M. G., Coude, Du Foresto V., Beckwith, S. V. W., Richichi, A., and McCaughrean, M. J. (1998). Binary stars in the Orion Trapezium cluster core. ApJ, 500, 825.Google Scholar
Preibisch, T., Balega, Y., Hofmann, K.-H., Weigelt, G., and Zinnecker, H. (1999). Multiplicity of the massive stars in the Orion Nebula cluster. New Astron., 4, 531.CrossRefGoogle Scholar
Roddier, F. J., Anuskiewicz, J., Graves, J. E., Northcott, M. J., and Roddier, C. A. (1994). Adaptive optics at the University of Hawaii I: current performance at the telescope. Proc. SPIE, 2201, 2.Google Scholar
Schödel, R., Ott, T., Genzel, R., et al. (2002). A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature, 419, 694.Google Scholar
Schödel, R., Ott, T., Genzel, R., et al. (2003). Stellar dynamics in the central arcsecond of our Galaxy. ApJ, 596, 1015.Google Scholar
Sellgren, K., McGinn, M. T., Becklin, E. E., and Hall, D. N. B. (1990). Velocity dispersion and the stellar population in the central 1.2 parsecs of the Galaxy. ApJ, 359, 112.Google Scholar
Stolte, A., Ghez, A. M., Morris, M., et al., (2008). The proper motion of the Arches cluster with Keck laser-guide star adaptive optics. ApJ, 675, 1278.Google Scholar
Torres, G., Stefanik, R. P., and Latham, D. W. (1997). The Hyades binaries Theta 1 Tauri and Theta 2 Tauri: the distance to the cluster and the mass-luminosity relation. ApJ, 485, 167.Google Scholar
Weigelt, G. P. (1977). Modified astronomical speckle interferometry ‘speckle masking’. Opt. Commun., 21, 55.CrossRefGoogle Scholar
Weigelt, G., Balega, Y., Preibisch, T., et al. (1999). Bispectrum speckle interferometry of the Orion Trapezium stars: detection of a close (33 mas) companion to Theta (1) ORI C. A&A, 347, L15.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×