Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T04:35:33.705Z Has data issue: false hasContentIssue false

3 - Wide band gap transistors – SiC and GaN – physics, design and models

Published online by Cambridge University Press:  05 November 2011

R. J. Trew
Affiliation:
ECE Department, North Carolina State University
Get access

Summary

Introduction

Although solid-state transistors have replaced vacuum electronics in the vast majority of microwave electronic systems over the past 40 years the revolution is not complete. In particular, the areas of high RF power for microwave and millimeter-wave radar and communications transmitter applications, the ability to produce adequate RF power levels at frequencies greater than 100 GHz, and the ability of devices to operate at high temperatures greater than about 250 °C remain dominated by microwave tubes. Further solid-state material and transistor developments in these areas are among the last frontiers for semiconductor electronics. In these areas solid state transistors have not been able to compete with vacuum tube devices, and most systems that must deliver kW to MW power levels are designed using various types of microwave tube.

The current state-of-the-art for microwave solid-state devices and for microwave tubes is shown in Figure 3.1. As indicated, solid-state devices produce RF power levels less than about 100 W and operate with reasonable RF output power to frequencies of about 100 GHz. The RF performance status shown in Figure 3.1 is for single device operation, and does not necessarily represent a true comparison of the RF output power capability of a system. Power combining and phased array technology permit the outputs of many solid state transistors to be combined, thereby producing significantly improved RF output power and solid state systems can, in practice, compete in terms of RF output power with tube-based systems in some cases. Combining technology can raise microwave RF output power into the kW range, at least through S band and into Ku band [1–4], and theoretically to much higher power levels. However, such multidevice concepts are increasingly difficult to apply as operating frequency increases and cannot extend the upper frequency limit beyond the present state-of-the-art. Operation at frequencies above X band and up to 100 GHz with RF output power in the hundreds of watts or kW range will require new semiconductor materials and/or transistor concepts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kruger, B. E. 1995 227
Kumar, M.Hanczor, M.Voigt, H.Cambigians, G.Sachs, R.Bonilla, C.1601 1995
Marae, T.Fujii, K.Matsuno, T. 2001 653
Cicolani, M.1723 2000
Trew, R. J.SiC and GaN transistors: is there one winner for microwave power applicationsProceedings of the IEEE, Special Issue on Wide Bandgap Semiconductors 2002 90 1047.Google Scholar
Baliga, B. J.Silicon Carbide Power DevicesWorld ScientificSingapore 2005Google Scholar
Trew, R. J.Yan, J. B.Mock, P. M.The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applicationsProc. IEEE 79 598 1991CrossRefGoogle Scholar
Zhao, F.Perez, I.Huang, C-F.Torvik, J.Van Zeghbroeck, B.Analysis of transit times and minority carrier mobility in –– 4H-SiC bipolar junction transistorsIEEE. Trans. Electron Dev. 52 2541 2005CrossRefGoogle Scholar
Zhao, F.Perez-Wurfl, I.Huang, C-F.Torvik, J.Van Zeghbroeck, B. 2005
Huang, C-F.Cooper, J. A.High current gain 4H-SiC NPN bipolar junction transistorsIEEE Electron Dev. Lett. 24 396 2003CrossRefGoogle Scholar
Galeckas, A.Linnros, J.Frischholz, M.Rottner, K.Nordell, N.Karlsson, S.Grivickas, V.Investigation of surface recombination and carrier lifetimes in 4H/6H-SiCMat. Sci. Eng. B61 239 1999CrossRefGoogle Scholar
Kimoto, T.Miyamoto, N.Matsunami, H.Performance limiting surface defects in SiC epitaxial p-n junction diodesIEEE Trans. Electron Dev. 46 471 1999CrossRefGoogle Scholar
Zhang, J.Alexandrov, P.Burke, T.Zhao, J. H.4h-sic power bipolar junction transistor with a very low specific ON-resistance of 2.9 mW-cm2IEEE Electron. Dev. Lett. 27 368 2006CrossRefGoogle Scholar
Zhang, J.Zhao, J. H.Alexandrov, P.Burke, T.Demonstration of first 9.2 KV 4H-SiC bipolar junction transistorIEE Electron Lett 40 1381 2004CrossRefGoogle Scholar
Huang, C-F.Perez, I.Zhao, F.Torvik, J.Irwin, R.Torvik, K.Abrhaley, F.Van Zeghbroeck, B.2 2004
Brandt, C. D.Clarke, R. C.Siergiej, R. R.Casady, J. B.Sriram, S.Agarwal, A. K.SiC for applications in high-power electronicsSic Materials and Devices, Semiconductors and Semimetals 52 1998CrossRefGoogle Scholar
Siergiej, R. R.Clarke, R. C.Agarwal, A. K.Brandt, C. D.Burke, A. A.Morse, A.Orphanos, P. A.High power 4H-SiC static induction transistorsIEDM Dig353Washington DC 1995Google Scholar
Clarke, R. C.Agarwal, A. K.Siergiej, R. R.Brandt, C. D.Morse, A. W.The mixed mode 4H-SiC SIT as an S-band microwave power transistorDevice Research Conf. Dig62Santa Barbara, CA 1996Google Scholar
Morse, A. W.Esker, P. M.Clarke, R. C.Brandt, C. D.Siergiej, R. R.Agarwal, A. K.Application of high power silicon carbide transistors at radar frequencies 1996 IEEE MTT-S Dig677Google Scholar
Clarke, R. C.Morse, A. W.Esker, P.Curtice, W. R.141 2000
De Salvo, G. C.Esker, P. M.Flint, T. A.Ostop, J. A.Stewart, E. J.Knight, T. J.Petrosky, K. J.Van Campen, S. D.Clarke, R. C.Bates, G. M.Ion implanted SiC static induction transistor with 107 W output power and 59% power-added efficiency under CW operation at 750 MHzInt. J. High Speed Electronics and Syst. 14 906 2004CrossRefGoogle Scholar
Trew, R. J.SiC microwave devices272Semiconductors and Semimetals 52 1998Google Scholar
Sriram, S.Barron, R.Morse, A. WSmith, T. J.Augustine, G.Burk, A.A.Clarke, R. C.Glass, R. C.Hobgood, H. M.Orphanos, P. A.Siergiej, R. R.Brandt, C. D.Driver, M. C.Hopkins, R. H.104 1995
Weitzel, C.Palmour, J. W.Carter, C. H.Nordquist, K. J.4H-SiC MESFET with 2.8 W/mm power density at 1.8 GHzIEEE Electron Dev. Lett. 15 406 1994CrossRefGoogle Scholar
Moore, K. E.Weitzel, C. E.Nordquist, K. J.Pond, L. L.Palmour, J. W.Allen, S.Carter, C. H.4h-sic mesfet with 65.7% power-added efficiency at 850 MHzIEEE Electron Dev. Lett 18 69 1997CrossRefGoogle Scholar
Sriram, S.Augustine, G.Burk, A. A.Glass, R. C.Hobgood, H. M.Orphanos, P. A.Rowland, L. B.Smith, T. J.Brandt, C.Driver, M. C.Hopkins, R. H.4H-SiC MESFET's with 42 GHz fmaxIEEE Electron Dev. Lett. 17 369 1996CrossRefGoogle Scholar
Morse, A. W.Esker, P. M.Sriram, S.Hawkins, J. J.Chen, L. S.Ostop, J. A.Smith, T. J.Davis, C. D.Barron, R. R.Clarke, R. C.Siergiej, R. R.Brandt, C. D.53 1997
Sadler, R. A.Allen, S. T.Alcorn, T. S.Pribble, W. L.Sumakeris, J.Palmour, J. W.92 1998
Sadler, R. A.Allen, S. T.Pribble, W. L.Alcorn, T. SSumakeris, J. J.Palmour, J. W.173 2000
Luo, B.Chen, P.Higgins, A.Finlay, H.Boutros, K.Pierce, B.Griffey, D.Kolosick, J.56 W SiC MESFET transistors with >50% PAE for L-band applicationsProceedings of the 17th International Symosium on Power Semiconductor Devices & IC'sSanta Barbara, CA 2005 1Google Scholar
Henry, H.Augustine, G.DeSalvo, G.Brooks, R.C.Oliver, J.Morse, A.Veasel, B.Esker, P.Clarke, R.S-band operation of SiC power MESFET with 20 W (4.4 W/mm) output power and 60% PAEIEEE Trans. Electron Dev. 51 839 2004CrossRefGoogle Scholar
Asano, A.Miyoshi, Y.Ishikura, K.Nashimoto, Y.Kuzuhara, M.Mizuta, M.59 1998
Andersson, K.Sudow, M.Nilsson, A.Sveinbjornsson, E.Hjelmgren, H.Nilsson, J.Stahl, J.Zirath, H.Rorsman, N.Fabrication and characterization of field-plate buried-gate SiC MESFET'sIEEE Electron Dev. Lett. 27 573 2006CrossRefGoogle Scholar
Sayed, A.Boeck, G.Two-stage ultrawide-band 5 W power amplifier using SiC MESFETIEEE Trans. Microw. Theory Tech. 53 2441 2005CrossRefGoogle Scholar
Zhou, W. M.Fang, F.Hou, Z. Y.Yan, L. J.Zhang, Y. F.Field-effect transistor based on b-SiC nanowireIEEE Electron Dev. Lett. 27 463 2006CrossRefGoogle Scholar
Wu, Y. F.Keller, B. P.Fini, P.Keller, S.Jenkins, T. J.Kehias, L. T.Denbaars, S. P.Mishra, U. K.50 1998
Ping, A. T.Chen, Q.Yang, J. W.Khan, M. A.Adesida, I.54 1998
Sullivan, G. J.Chen, M. Y.Higgins, J. A.Yang, J. W.Chen, Q.Pierson, R. L.McDermott, B. T.High power 10 GHz operation of AlGaN HFET's on insulating SiCIEEE Electron Dev. Lett 19 198 1998CrossRefGoogle Scholar
Sheppard, S. T.Doverspike, K.Pribble, W. L.Allen, S. T.Palmour, J. W.Kehia, L. T.Jenkins, T. J.High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substratesIEEE Electron Dev. Lett. 20 161 1999CrossRefGoogle Scholar
Chen, Q.Yang, J. W.Gaska, R.Khan, M. A.Shur, M. S.Sullivan, G. J.Sailor, A. L.Higgings, J. A.Ping, A. T.Adesida, I.High-power 0.25-mm gate doped-channel GaN/AlGaN heterostructure field effect transistorIEEE Electron Dev. Lett. 19 44 1998CrossRefGoogle Scholar
Eastman, L. F.Tilak, V.Smart, J.Green, B. M.Chumbes, E. M.Dimitrov, R.Hyungtak, K.Ambacher, O. S.Weimann, N.Prunty, T.Murphy, M.Schaff, W. J.Shealy, J. R.Undoped AlGaN/GaN HEMT's for microwave power amplificationIEEE Trans. Electron Dev. 48 479 2001CrossRefGoogle Scholar
Wu, Y. F.Kapolnek, D.Ibbetson, J. P.Parikh, P.Keller, B.Mishra, U. K.Very-high power density AlGaN/GaN HEMT'sIEEE Trans. Electron Dev. 48 586 2001Google Scholar
Tilak, V.Green, B.Kaper, V.Kim, H.Prunty, T.Smart, J.Shealy, J.Eastman, L.Influence of barrier thickness on the high-power performance of AlGaN/GaN HEMTsIEEE Electron Dev. Lett. 22 504 2001CrossRefGoogle Scholar
Shen, L.Heikman, S.Moran, B.Coffie, R.Zhang, Q.Buttari, D.Smorchkova, I. P.Keller, S.DenBaars, S. P.Mishra, U. K.AlGaN/AlN/GaN high-power microwave HEMTIEEE Electron Dev. Lett. 22 457 2001CrossRefGoogle Scholar
Yu, Y-F.Saxler, A.Moore, M.Smith, R. P.Sheppard, S.Chavarkar, P. M.Wisleder, T.Mishra, U. K.Parikh, P.30-W/mm GaN HEMTs by field plate optimizationIEEE Electron Dev. Lett. 25 117 2004Google Scholar
Corrion, A.Poblenz, C.Waltereit, P.Palacios, T.Rajan, S.Mishra, U.K.Speck, J. S.Review of recent developments in growth of AlGaN/GaN high-electron mobility transistors on 4H-SiC by plasma-assisted molecular beam epitaxyIEICE Trans. Electronics E89 906 2006CrossRefGoogle Scholar
Johnson, J. W.Piner, E. L.Vescan, A.Therrien, R.Rajagopal, P.Roberts, J. C.Brown, J. D.Singhal, S.Linthicum, K. J.12 W/mm AlGaN-GaN HFETs on silicon substratesIEEE Electron Dev. Lett. 25 459 2004CrossRefGoogle Scholar
Dumka, D. C.Lee, C.Tserng, H. Q.Saunier, P.Kumar, M.AlGaN/GaN HEMTs on Si substrates with 7 W/mm output power density at 10 GHzElectron. Lett. 40 2004CrossRefGoogle Scholar
Ducatteau, D.Minko, A.Hoel, V.Morvan, E.Delos, E.Grimbert, B.Lahreche, H.Bove, P.Gaquiere, C.De Jaeger, J. C.Delage, S.Output power density of 5.1W/mm at 18 GHz with an AlGaN/GaN HEMT os Si substrateIEEE Electron Dev. Lett. 27 7 2006CrossRefGoogle Scholar
Lee, C.Wang, H.Yang, J.Witkowski, L.Muir, M.Khan, M. A.Saunier, P.State-of-art CW power density achieved at 26 GHz by AlGaN/GaN HEMTsElectron. Lett. 38 924 2002CrossRefGoogle Scholar
Lee, C.Saunier, P.Yang, J.Khan, M. A.AlGaN-GaN HEMTs on SiC with CW power performance >4W/mm and 23% PAE at 35%IEEE Electron Dev. Lett 24 616 2003CrossRefGoogle Scholar
Boutros, K.Regan, M.Rowell, P.Gotthold, D.Birkhahn, R.Brar, B. 2003
Moon, J. S.Wu, S.Wong, D.Milosavljevic, I.Conway, A.Hashimoto, P.Hu, M.Antcliffe, M.Micovic, M.Gate-recessed AlGaN-GaN HEMTs for high performance millimeter-wave applicationsIEEE Electron Dev. Lett. 26 348 2005CrossRefGoogle Scholar
Palacios, T.Chakroborty, A.Rajan, S.Poblenz, C.Keller, S.DenBaars, S. P.Speck, J. S.Mishra, U. K.High-power AlGaN/GaN HEMTs for Ka-band applicationsIEEE Electron Dev. Lett. 26 781 2005CrossRefGoogle Scholar
Cai, Y.Zhou, Y.Chen, K. J.Lau, K. M.High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatmentIEEE Electron Dev. Lett. 26 435 2005Google Scholar
Shen, L.Palacios, T.Poblenz, C.Corrion, A.Chakraborty, A.Fichtenbaum, N.Keller, S.DenBaars, S. P.Speck, J. S.Mishra, U. K.Unpassivated high power deeply recessed GaN HEMTs with fluorine-plasma surface treatmentIEEE Electron Dev. Lett. 27 214 2006CrossRefGoogle Scholar
Katz, O.Mistele, D.Meyler, B.Bahir, G.Salzman, J.1035 2004
Katz, O.Mistele, D.Meyler, B.Bahir, G.Salzman, J.Characteristics of InAlN-GaN high-electron mobility field-effect transistorIEEE Trans. Electron Dev 52 146 2005CrossRefGoogle Scholar
Palacios, T.Chakraborty, A.Heikman, S.Keller, S.DenBaars, S. P.Mishra, U. K.AlGaN/GaN high electron mobility transistors with InGaN back-barriersIEEE Electron Dev. Lett. 27 13 2006CrossRefGoogle Scholar
Liu, J.Zhou, Y.Zhu, J.Lau, K. M.Chen, K. J.AlGaN/GaN/InGaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinementIEEE Electron Dev. Lett. 27 10 2006Google Scholar
Higashiwaki, M.Mimura, T.Matsui, T.AlN/GaN insulated-gate HFETs using Cat-CVD SiNIEEE Electron Dev. Lett. 27 719 2006CrossRefGoogle Scholar
Ando, Y.Okamoto, Y.Miyamoto, H.Nakamura, T.Inoue, T.Kuzuhara, M.10-W/mm AlGaN-GaN HFET with a field modulating plateIEEE Electron Dev. Lett. 24 289 2003CrossRefGoogle Scholar
Vetury, R.Wei, Y.Green, D. S.Gibb, S. R.Mercier, T. W.Leverich, K.Garber, P. M.Poulton, M. J.Shealy, J. B.487 2005
Kamo, Y.495 2005
Kikkawa, T.1347 2004
Nagy, W.Singhal, S.Borges, R.Johnson, J. W.Brown, J. D.Therrien, R.Chaudhari, A.Hanson, A. W.Riddle, J.Booth, S.Rajagopal, P.Piner, E. L.Linthicum, K. J.483 2005
Therrien, R.Singhal, S.Johnson, J. WNagy, W.Borges, R.Chaudhari, A.Hanson, A. W.Edwards, A.Marquart, J.Rajagopal, P.Park, C.Kizilyalli, I. C.Linthicum, K. J. 2005
Kruger, O.Schone, G.Wernicke, T.Lossy, R.Liero, A.Schnieder, F.Wurfl, J.Trankle, G.Laser-assisted processing of VIAs for AlGaN/GaN HEMTs on SiC substratesIEEE Electron Dev. Lett.27425 2006Google Scholar
Krishnamurthy, K.Martin, J.Landbert, B.Vetury, R.Poulton, M. J.Wideband 400 W pulsed power GaN HEMT amplifiersIEEE CSIC Symp. Dig303Monterey, CA 2008Google Scholar
Piotrowicz, S.Morvan, E.Aubry, R.Bansropun, S.Bouvet, T.Chartier, E.Dean, T.Drisse, O.Dua, C.Floriot, DdiForte Poisson, M.A.Gourdel, Y.Hydes, A. J.Jacquet, C.Jardel, O.Lancereau, D.McLean, J. O.Lecoustre, G.Martin, A.Quarch, Z.Reveyrand, T.Richard, M.Sarazin, N.Thenot, D.Delage, S. L.State of the art 58W, 38% PAE X-Band AlGaN/GaN HEMTs microstrip MMIC amplifiersIEEE CSIC Symp. Dig1Monterey, CA 2008Google Scholar
Micovic, M.Kurdoghian, A.Moyer, H. P.Hasimoto, P.Hu, M.Antcliffe, M.Willadsen, P. J.Wong, W. S.Bowen, R.Milosavljevic, I.Yoon, Y.Schmitz, A.Wetzel, M.McGruire, C.Hughes, B.Chow, D. H.GaN MMIC PAs for E-Band (71 GHz-95 GHz) radioIEEE CSIC Symp. Dig1Monterey, CA 2008Google Scholar
Trew, R. J.Wide bandgap semiconductor transistors for microwave power amplifiersIEEE Microw. Mag 1 46 2000CrossRefGoogle Scholar
Trew, R. J.638 2005
Winslow, T. A.Trew, R. J.Gilmore, P.Kelley, C. T.Simulated performance optimization of GaAs MESFET amplifiersProceeding of the Thirteenth Biennial Conference on Advanced Concepts in High Speed Semiconductor Devices and CircuitsIthaca, NY 1991 393Google Scholar
Micovic, M.Kurdoghlian, A.Moyer, H. P.Hashimoto, P.Hu, M.Antcliffe, M.Willadsen, P. J.Wong, W. S.Bowen, R.Milosavljevic, I.Yoon, Y.Schmitz, A.Wetzel, M.McGuire, C.Hughes, B.Chow, D. H.1 2008
Khatibzadeh, M. A.Trew, R. J.A large-signal, analytic model for the GaAs MESFETIEEE Trans. Microw. Theory Tech. 36 231 1988CrossRefGoogle Scholar
Trew, R. J.Liu, Y.Bilbro, G. L.Kuang, W. W.Vetury, R.Shealy, J. B.Nonlinear source resistance in high voltage microwave AlGaN/GaN HFET'sIEEE Trans. Microw. Theory Tech. 54 2061 2006CrossRefGoogle Scholar
Bilbro, G. L.Trew, R. J.RF knee walkout and source access region of unpassivated HFET'sElectronics Lett 42 1425 2006CrossRefGoogle Scholar
Trew, R. J.Green, D. S.Shealy, J. BAlGaN/GaN HFET reliabilityIEEE Microw. Mag. 10 116 2009CrossRefGoogle Scholar
Trew, R. J.Liu, Y.Kuang, W. W.Bilbro, G. L.The physics of reliability for AlGaN/GaN HFETsCompound Semiconductor Integrated Circuits Symp. () DigSan Antonio, TX13 2006Google Scholar
Inoue, Y. 2007 639
Winslow, T. A.Trew, R. J.Principles of large-signal MESFET OperationIEEE Trans. Microwave Theory Tech. 42 935 1994CrossRefGoogle Scholar
Kuang, W.Trew, R. J.Bilbro, G L.An analytical model for surface leakage currents of AlGaN/GaN HFETs and effects upon device reliabilityWOCSDICEBelgium18 2008Google Scholar
Trew, R. J.Liu, Y.Kuang, W.Bilbro, G. L.Reliability modeling of high-voltage AlGaN/GaN and GaAs field-effect transistorsProc. of SPIE 6894 2008CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×