Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T12:24:27.688Z Has data issue: false hasContentIssue false

4 - III-V Compound, Concentrator and Photoelectrochemical Cells

Published online by Cambridge University Press:  05 July 2018

J. N. Roy
Affiliation:
Indian Institute of Technology, Kharagpur
D. N. Bose
Affiliation:
Indian Institute of Technology, Kharagpur
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Sze, S. M. 1980. Physics of Semiconductor Devices. New Jersey: Wiley.Google Scholar
[2] Jenny, D. A., J. J., Loferski, and P., Rappaport. 1956. ‘Photovoltaic Effect in GaAs p-n Junctions and Solar Energy Conversion’. Phys. Rev. 101 (3): 1208.CrossRefGoogle Scholar
[3] Moon, Sunghyun, Kangho, Kim, Youngjo, Kim, Junseok, Heo, and Jaejin, Lee. 2016. ‘Highly Efficient Single-junction GaAs Thin-film Solar Cell on Flexible Substrate’. Scientific Reports 6: 30107.CrossRefGoogle ScholarPubMed
[4] Yablonovich, E., D. D., Miller, and S. M., Kurtz. 2012. ‘The Opto-electronic Physics that Broke the Efficiency Limit in Solar Cells’. Proc. 38th IEEE Photovoltaic Specialists Conference 001556- 001559.
[5] Alferov, Zh. I. et al. 1970. ‘Solar-energy Converters Based on p-n AlxGa1-xAs-GaAs Heterojunctions’. Fiz. Tekh. Poluprovodn. 4: 2378. 1971. Sov. Phys. Semicond. 4: 2047.Google Scholar
[6] Woodall, J. M., and H. J., Hovel. 1972. ‘High Efficiency Ga1-x Alx As-GaAs Solar Cells. Appl. Phys. Lett. 21 (8): 379-381.CrossRefGoogle Scholar
[7] Razeghi, M. 1989. MOVPE Challenge. Vol. 1. Bristol: Adam Hilger.Google Scholar
[8] Stringfellow, G. B. 1999. Organometallic Vapor-Phase Epitaxy: Theory and Practice 2nd edition. New York: Academic Press.Google Scholar
[9] Aspnes, D. E., E., Colas, A. A., Studna, R., Bhat, M. A., Koza, and V. G., Keramidas. 1988. ‘Kinetic Limits of Monolayer Growth on (001) GaAs by Organometallic Chemical-vapor Deposition’. Phys. Rev. Lett. 61 (24): 2782.CrossRefGoogle ScholarPubMed
[10] Matthews, J. W., and A. E., Blakeslee. 1974. ‘Defects in Epitaxial Multilayers: I. Misfit Dislocations’. J. Cryst. Growth 27: 118-125.Google Scholar
[11] Alonso Garcıa, M. C., and J. L., Balenzategui. 2004. ‘Estimation of Photovoltaic Module Yearly Temperature and Performance Based on Nominal Operation Cell Temperature Calculations’. Renewable Energy 29 (12): 1997-2010.CrossRefGoogle Scholar
[12] Min, Cui. et al. 2009. ‘Thermal Analysis and Test for Single Concentrator Solar Cells’. J of Semiconductors 30 (4): 044011.CrossRefGoogle Scholar
[13] Beckman, W. A., P., Schoffer, W. R., Hartman, and G. O. G., Lof. 1966. ‘Design Considerations for a 50 W Photovoltaic Power Solar System using Concentrated Solar Energy’. Solar Energy 10 (3): 132-136.CrossRefGoogle Scholar
[14] Sinton, R. A., Y., Kwark, J. Y., Gan, and R. M., Swanson. 1986. ‘27.5 % Silicon Concentrator Solar Cells’. IEEE Electron Device Letters 7 (10): 567-569.CrossRefGoogle Scholar
[15] Frank, R. I., J. L., Goodrich, and R., Kaplow. 1980. ‘A Novel Silicon High Intensity Photovoltaic Cell’. 14th IEEE Photovoltaic Conf. New York. 1350.Google Scholar
[16] James, L. W., and R. L., Moon. 1975. ‘GaAs Concentrator Solar Cell’. Appl. Phys. Lett. 26 (8): 467-470.CrossRefGoogle Scholar
[17] Andrews, Rob W., Andrew, Pollard, and Joshua M., Pearce. 2013. ‘Photovoltaic System Performance Enhancement with Non-tracking Planar Concentrators: Experimental Results and BDRF based Modelling’. 39th IEEE Photovoltaic Specialists Conference. 229-234.Google Scholar
[18] Ferber, R. R., R. N., Costogue, and K., Shimada. 1984. Multijunction Cells for Concentrators: Technology Prospects. Pasadena, California: JPL Publications.Google Scholar
[19] King, R. R. et al. 2000. ‘Next-Generation, High-Efficiency III-V Multijunction Solar Cells’. Proc. 28th IEEE Photovoltaic Specialists Conference. 998-1001.Google Scholar
[20] Kurtz, S. et al. 2005. ‘A New GaInP/GaAs/GaInAs Triple Bandgap, Tandem Solar Cell for High Efficiency Terrestrial Concentrator Systems’. DOE Solar Energy Technologies Program Review Meeting, Denver.
[21] Dimroth, F. et al. 2014. ‘Wafer Bonded Four-junction GaInP/GaAs/GaInAsP/GaInAs Concentrator Solar Cells with 44.7% Efficiency’. Progress in Photovoltaics: Research and Applications 22 (3): 277-282.CrossRefGoogle Scholar
[22] Markvart, T., A. F. W., Willoughby, and A. A., Dollery. 1987. ‘Radiation-resistant Silicon Solar Cell’. Proc. 19th IEEE Photovoltaic Specialists Conference. 709.Google Scholar
[23] Wysocki, J. J. et al. 1966. ‘Lithium-doped Radiation-resistant Silicon Solar Cells’. Appl. Phys. Lett. 9: 44-46.CrossRefGoogle Scholar
[24] Yamaguchi, M., C., Uemura, and A., Yamamoto. 1984. ‘Radiation Damage in InP Single Crystals and Solar Cells’. J. Appl. Phys. 55 (6): 1429-1436.CrossRefGoogle Scholar
[25] Heller, A. ed. 1977. Semiconductor - Liquid Junction Solar Cells. Princeton, N.J.: Electrochem. Soc.Google Scholar
[26] Fujishima, A., and K., Honda. 1972. ‘Electrochemical Photolysis of Water at a Semiconductor Electrode’. Nature 238 (5358): 37-38.CrossRefGoogle Scholar
[27] Nowotny, Janusz. 2012. Oxide Semiconductors for Solar Energy Conversion. Boca Raton: CRC Press.Google Scholar
[28] Gerischer, H. 1977. ‘On the Stability of Semiconductor Electrodes against Photodecomposition’. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 82 (1): 133-143.CrossRefGoogle Scholar
[29] Tufts, B. J. et al. 1987. ‘Chemical modification of n-GaAs electrodes with Os3+ gives a 15% efficient solar cell.Nature 326 (6116): 861-863.CrossRefGoogle Scholar
[30] Mandal, K. C., S., Basu, and D. N., Bose. 1986. ‘Surface Modified CdTe PEC Solar Cells’. Solar Cells 18 (1): 25-30.CrossRefGoogle Scholar
[31] Gratzel, M. 2001. Review article ‘Photoelectrochemical Cells’. Nature 414 (6861): 338.CrossRefGoogle Scholar
[32] Hodes, G., D., Cahen, and J., Manassen. 1976. ‘Photoelectrochemical Energy Conversion and Storage using Polycrystalline Chalcogenic Electrodes’. Nature 261 (5559): 403-404.CrossRefGoogle Scholar
[33] May, M. M. et al. 2015. ‘Efficient Direct Solar-to-hydrogen Conversion by in situ Interface Transformation of a Tandem Structure. Nat. Commun. 6: 8286.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×