Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T11:50:12.924Z Has data issue: false hasContentIssue false

3 - Thin Film Solar Cells

Published online by Cambridge University Press:  05 July 2018

J. N. Roy
Affiliation:
Indian Institute of Technology, Kharagpur
D. N. Bose
Affiliation:
Indian Institute of Technology, Kharagpur
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Street, R. A. 1991. Hydrogenated Amorphous Silicon. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
[2] Orton, J. 2004. Story of Semiconductors. New York: Oxford University Press.Google Scholar
[3] Chittick, R. C., J. H., Alexander, and H. F., Sterling. 1969. ‘The Preparation and Properties of Amorphous Silicon’. J. Electrochem. Soc. 116 (1): 77–81.CrossRefGoogle Scholar
[4] Spear, W. E., and P. G., LeComber. 1975. ‘Substitutional Doping of Amorphous Silicon’. Sol. St. Commn. 17:1193.CrossRefGoogle Scholar
[5] Carlson, D. E., and C. R., Wronski. 1976. ‘Amorphous Silicon Solar Cell’. Phys. Lett. 28: 71.Google Scholar
[6] Staebler, D. L., and C. R., Wronski. 2004. ‘Intrinsic and Light Induced Gap States in a-Si:H Materials and Solar Cells - Effects of Microstructure’. Thin Solid Films 451–52: 470–75.Google Scholar
[7] Stutzmann, M., W. B., Jackson, and C. C., Tsai. 1985. ‘Light-induced Metastable Defects in Hydrogenated Amorphous Silicon: A systematic study’. Phys. Rev. B. 32: 23; Stutzmann, M., W. B., Jackson, and C. C., Tsai. 1986. ‘Annealing of Metastable Defects in Hydrogenated Amorphous Silicon’. Phys. Rev. B. 34: 63.Google Scholar
[8] Redfield, D., and R. H., Bube. 1991. ‘Evidence that Degradation in a-Si:H Solar Cells is an i Layer Effect’. Proc. 22nd IEEE Photovoltaic Specialists Conference. New York.Google Scholar
[9] Shah, A. et al. 2006. ‘Towards very Low-cost Mass Production of Thin-film Silicon Photovoltaic (PV) Solar Modules on Glass’. Thin Solid Films 502 (1–2): 292-299.CrossRefGoogle Scholar
[10] Kimura, H. et al. 1994. ‘High Deposition Rate Amorphous Silicon Solar Cells and Thin Film Transistor (TFT)’. Appl. Phys. 43: 4389.Google Scholar
[11] Paranthaman, M. Paran., Winnie, Wong-Ng, and Raghu N., Bhattacharya. 2015. Semiconductor Materials for Photovoltaics. Springer Series in Materials Science, Vol 128. Switzerland.Google Scholar
[12] Mishima, T., Mikio, Taguchi, Hitoshi, Sakata, and Eiji, Maruyama. 2010Development Status of High-efficiency HIT Solar Cells’. Sol. Energy Mater. Sol. Cells 95 (1): 18-21.Google Scholar
[13] Zhao, L. et al. 2008. ‘Design Optimization of Bifacial HIT Solar Cells on p-type Silicon Substrates by Simulation’. Solar Energy Materials and Solar Cells 92 (6): 673.CrossRefGoogle Scholar
[14] Coutts, T. J., L. L., Kazmerski, and S., Wagner. eds. 1986. Copper Indium Diselenide for Photovoltaic Applications. Amsterdam: Elsevier.Google Scholar
[15] Hedstrom, J. et al. 1993. ‘ZnO/CdS/Cu(In,Ga)Se2 Thin Film Solar Cells with Improved Performance’. Proc. 23rd IEEE Photovoltaic Specialists Conference. 364–71.Google Scholar
[16] Kronik, L., D., Cahen, and H. W., Schock. 1998. ‘Effects of Sodium on Polycrystalline Cu (In,Ga) Se2 and its Solar Cell Performance’. Advanced Materials 10: 31–6.3.0.CO;2-3>CrossRefGoogle Scholar
[17] Repins, I. et al. 2008. ‘19.9% Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Facto’. Progress in Photovoltaics: Research and Applications 16 (3): 235.CrossRefGoogle Scholar
[18] Flisom, A. G. 2014. Flexible PV – from Lab to Fab - Swissolar. Available at - www.swissolar.ch
[19] Cusano, D. A. 1963. ‘CdTe Solar Cells and Photovoltaic Heterojunctions in II-VI Compounds’. Solid-State Electronics, 6 (3): 217-232.CrossRefGoogle Scholar
[20] Tyan, Y. S. 1978. ‘Polycrystalline Thin Film CdS/CdTe Photovoltaic Cell’. Kodak, U.S. Patent 4,207,119.
[21] Hamid, Fardi, and Buny, Fatima. 2013. ‘Characterization and Modeling of CdS/CdTe Heterojunction Thin Film Solar Cell for High Efficiency Performance’. International Journal of Photoenergy. Article ID 576952.
[22] Ikegami, S. 1988. ‘CdS/CdTe Solar Cells by the Screen-Printing-Sintering Technique: Fabrication, Photovoltaic Properties and Applications’. Solar Cells 23 (1-2): 89–105.CrossRefGoogle Scholar
[23] Ohyama, H., T., Aramoto, and S., Kumazawa. 1997. ‘16.0% Efficient Thin-Film CdS/CdTe Solar Cells’. Conference Record of the Twenty-Sixth IEEE, pp. 343-346. IEEE.Google Scholar
[24] Das, S., K. C., Mandal, and R. N., Bhattacharya. 2016. ‘Earth-abundant Cu2ZnSnS4 (CZTS) Solar Cells’. Semiconductor Materials for Photovoltaics. Springer Series in Materials Science, Switzerland. 128.Google Scholar
[25] Chen, Shiyou, Aron, Walsh, Ye, Luo, Ji-Hui, Yang, X. G., Gong, and Su-Huai, Wei. 2010Wurtzitederived Polytypes of Kesterite and Stannite Quaternary Chalcogenide Semiconductors’. Phys. Rev. B 82: 195203.CrossRefGoogle Scholar
[26] Wang, K. et al. 2010. ‘Thermally Evaporated Cu2ZnSnS4 Solar Cells’. Appl. Phys. Lett. 97: 143508.CrossRefGoogle Scholar
[27] Todorov, T. K. et al. 2013. ‘Beyond 11% Efficiency Characteristics of State-of-the Art Cu2ZnSn(SSe)4 Solar Cells’. Adv. Energy Mater 3: 34.CrossRefGoogle Scholar
[28] Nazeerusddin, M. K., and H. K., Snaith. ed. 2015. ‘Perovskite Photovoltaics’. MRS Bulletin 40 (8).Google Scholar
[29] Xiong,, Li. et al. 2016. ‘A Vacuum Flash-assisted Solution Process for High Efficiency Large-area Perovskite Solar Cells’. Science 353 (6294): 58-62.Google Scholar
[30] Weber, Dieter. 1978. ‘CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure’, Zeitschrift fur Naturforschung B 33 (12): 1443-1445.Google Scholar
[31] Mitzi, D. B. 2001. ‘Thin-film Deposition of Organic-inorganic Hybrid Materials’. Chemistry of Materials 13 (10): 3283-3298.CrossRefGoogle Scholar
[32] Kojima, A. et al. 2009. ‘Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells’. J. Am. Chem. Soc. 131 (17): 6040.CrossRefGoogle ScholarPubMed
[33] Eames, Christopher et al. 2015. ‘Ionic Transport in Hybrid Lead Iodide Perovskite Solar Cells’. Nature Communications 6: 7497.CrossRefGoogle ScholarPubMed
[34] Askar, A. M., and K., Shankar. 2006. ‘Exciton Binding Energies in Inorganic-organic Tri-halide Perovskites’. J. of Nanoscience & Nanotechnology 16: 1–12.Google Scholar
[35] Kim, Junghwan et al. 2014. ‘Efficient Planar-Heterojunction Perovskite Solar Cells Achieved via Interfacial Modification of a Sol–Gel ZnO Electron Collection Layer’. J. Mater. Chem. A 2: 7291–6.CrossRefGoogle Scholar
[36] Lee, M. M. et al. 2012. ‘Efficient Hybrid Solar Cells based on Meso-superstructured Organometal Halide Perovskites’. Science 338 (6107): 643-647.CrossRefGoogle ScholarPubMed
[37] Im, J-H., H-S, Kim, and N-G, Park. 2012. ‘3-D TiO2 Nanoparticle/ITO Nanowire Nanocomposite Antenna for Efficient Charge Collection’. APL Mater 2: 08150.Google Scholar
[38] Era, M. et al. 1997. ‘Self-Organized Growth of PbI-Based Layered Perovskite Quantum Well by Dual-Source Vapor Deposition’. Chemistry of Materials 9 (1): 8-10.CrossRefGoogle Scholar
[39] Chen, Q. et al. 2014. ‘Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process’. Am. Chem. Soc. 136: 622.CrossRefGoogle ScholarPubMed
[40] Sunderland, B. R. et al. 2014. ‘Perovskite Thin Films via Atomic Layer Deposition’. Adv. Mater 27: 53.CrossRefGoogle Scholar
[41] Lee, Y. H. et al. 2015. ‘High efficiency Methylammonium Lead Triiodide Perovskite Solar Cells’. Adv. Funct. Mater doi:10 1002/ adfm.201501024.
[42] Stranks, S. 2015. ‘Photo-induced Halide Redistribution in Hybride Perovskite Films’. MRS Meeting, December 2015.
[43] Berkowitz,, R. 2016. ‘Heat-induced Metal Migration Damages Perovskite Solar Cells’. Materials Research Society, 30 June. https://www.cambridge.org/core/journals/mrs-bulletin/news/heatinduced-metal-migration-damages-perovskite-solar-cells
[44] Endres, J. 2015. ‘PES Study of the Inorganic Perovskite CsPbBr3 and Complementary Hole Transporting Polymer’. Proc. MRS Meeting, December 2015.
[45] Im, Jeong-Hyeok, Jingshan, Luo, Marius, Franckevicius, Norman, Pellet, Peng, Gao, Thomas, Moehl, Shaik Mohammed, Zakeeruddin, Mohammad Khaja, Nazeeruddin, Michael Gra, tzel, and Nam-Gyu, Park. 2015. ‘Nanowire Perovskite Solar Cell’. Nano Lett. 15: 2120.CrossRefGoogle ScholarPubMed
[46] Bailie, C. D., and M. D., McGehee. 2015. ‘High Efficiency Tandem Solar Cells’. ed. Nazeerusddin, M. K., and H. K., Snaith, MRS Bulletin 40 (8): 681.Google Scholar
[47] J. P., Mailoa et al. 2015. ‘A 2-terminal Perovskite/Silicon Multi-junction Solar Cell enabled by a Silicon Tunnel Junction.Applied Physics Letters 106 (12): 121105.Google Scholar
[48] Bailie, C. D. et al. 2015. ‘Semi-transparent Perovskite Solar Cells for Tandems with Silicon and CIGS’. Energy & Environmental Science 8(3): 956-963.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×