Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-19T23:26:58.076Z Has data issue: false hasContentIssue false

Chapter 6 - Liver MR imaging at 3T: challenges and opportunities

Published online by Cambridge University Press:  05 August 2011

Ihab R. Kamel
Affiliation:
The Johns Hopkins University School of Medicine
Elmar M. Merkle
Affiliation:
Duke University School of Medicine, North Carolina
Get access

Summary

Introduction

Increasing the main magnetic field strength for magnetic resonance (MR) imaging offers several theoretical advantages including higher signal to background noise, increased spectral separation, and better tissue contrast. The questions remain as to whether these theoretical advantages can be realized in the clinical setting and whether this implementation will lead to better lesion detection and characterization, more accurate diagnoses, and ultimately better patient outcome compared with 1.5T systems. While clinical 3T liver imaging is now more widely available, these questions still remain unanswered, as published scientific data are small. The answers will not only depend on the optimization of field strength-specific parameters but also on concomitant improvements in software and hardware.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lewin, J SDuerk, J LJain, V RNeedle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientationAJR Am J Roentgenol 1996 166 1337CrossRefGoogle ScholarPubMed
Guo, HAu, W YCheung, J SMyocardial T2 quantitation in patients with iron overload at 3 TeslaJ Magn Reson Imaging 2009 30 394CrossRefGoogle ScholarPubMed
von Falkenhausen, MMeyer, CLutterbey, GIntra-individual comparison of image contrast in SPIO-enhanced liver MR imaging at 1.5T and 3.0TEur Radiol 2007 17 1256CrossRefGoogle ScholarPubMed
Katz-Brull, RRofsky, N MLenkinski, R EBreathhold abdominal and thoracic proton MR spectroscopy at 3.0TMagn Reson Med 2003 50 461CrossRefGoogle Scholar
Futterer, J JScheenen, T WHuisman, H JInitial experience of 3 tesla endorectal coil magnetic resonance imaging and 1H-spectroscopic imaging of the prostateInvest Radiol 2004 39 671CrossRefGoogle ScholarPubMed
Soher, B JDale, B MMerkle, E MA review of MR physics: 3 T versus 1.5TMagn Reson Imaging Clin N Am 2007 15 277CrossRefGoogle Scholar
Franklin, K MDale, B MMerkle, E MImprovement in B1-inhomogeneity artifacts in the abdomen at 3 T MR imaging using a radiofrequency cushionJ Magn Reson Imaging 2008 27 1443CrossRefGoogle Scholar
Zapparoli, MSemelka, R CAltun, E3.0-T MR imaging evaluation of patients with chronic liver diseases: initial observationsMagn Reson Imaging 2008 26 650CrossRefGoogle Scholar
Collins, C MWang, ZMao, WArray-optimized composite pulse for excellent whole-brain homogeneity in high-field MRIMagn Reson Med 2007 57 470CrossRefGoogle ScholarPubMed
Katscher, UBornert, PLeussler, Cvan den Brink, J STransmit SENSEMagn Reson Med 2003 49 144CrossRefGoogle ScholarPubMed
Zhu, YParallel excitation with an array of transmit coilsMagn Reson Med 2004 51 775CrossRefGoogle ScholarPubMed
Vaughan, TDelaBarre, LSnyder, C9.4T human MRI: preliminary resultsMagn Reson Med 2006 56 1274CrossRefGoogle ScholarPubMed
Zhang, ZYip, C YGrissom, WReduction of transmitter B1 inhomogeneity with transmit SENSE slice-select pulsesMagn Reson Med 2007 57 842CrossRefGoogle ScholarPubMed
Hargreaves, B ACunningham, C HNishimura, D GConolly, S MVariable-rate selective excitation for rapid MRI sequencesMagn Reson Med 2004 52 590CrossRefGoogle ScholarPubMed
van den Bos, I CHussain, S MKrestin, G PWielopolski, P ALiver imaging at 3.0T: diffusion-induced black-blood echo-planar imaging with large anatomical volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility studyRadiology 2008 248 264CrossRefGoogle Scholar
Hennig, JScheffler, KHyperechoesMagn Reson Med 2001 46 6CrossRefGoogle ScholarPubMed
Hennig, JWeigel, MScheffler, KMultiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS)Magn Reson Med 2003 49 527CrossRefGoogle Scholar
Lichy, M PWietek, B MMugler, J PMagnetic resonance imaging of the body trunk using a single-slab, 3-dimensional, T2-weighted turbo-spin-echo sequence with high sampling efficiency (SPACE) for high spatial resolution imaging: initial clinical experiencesInvest Radiol 2005 40 754CrossRefGoogle ScholarPubMed
Rosenkrantz, A BPatel, J MBabb, J SStorey, PHecht, E MLiver MRI at 3 T using a respiratory-triggered time-efficient 3D T2-weighted technique: impact on artifacts and image qualityAJR Am J Roentgenol 2010 194 634CrossRefGoogle Scholar
Takahashi, MUematsu, HHatabu, HMR imaging at high magnetic fieldsEur J Radiol 2003 46 45CrossRefGoogle ScholarPubMed
de Bazelaire, C MDuhamel, G DRofsky, N MAlsop, D CMR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0T: preliminary resultsRadiology 2004 230 652CrossRefGoogle Scholar
Constable, R TAnderson, A WZhong, JGore, J CFactors influencing contrast in fast spin-echo MR imagingMagn Reson Imaging 1992 10 497CrossRefGoogle ScholarPubMed
Schindera, S TSoher, B JDelong, D MDale, B MMerkle, E MEffect of echo time pair selection on quantitative analysis for adrenal tumor characterization with in-phase and opposed-phase MR imaging: initial experienceRadiology 2008 248 140CrossRefGoogle ScholarPubMed
Fujiyoshi, FNakajo, MFukukura, YTsuchimochi, SCharacterization of adrenal tumors by chemical shift fast low-angle shot MR imaging: comparison of four methods of quantitative evaluationAJR Am J Roentgenol 2003 180 1649CrossRefGoogle ScholarPubMed
Angulo, PNonalcoholic fatty liver diseaseN Engl J Med 2002 346 1221CrossRefGoogle ScholarPubMed
Szczepaniak, L SNurenberg, PLeonard, DMagnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general populationAm J Physiol Endocrinol Metab 2005 288 E462CrossRefGoogle ScholarPubMed
Wieckowska, AMcCullough, A JFeldstein, A ENoninvasive diagnosis and monitoring of nonalcoholic steatohepatitis: present and futureHepatology 2007 46 582CrossRefGoogle ScholarPubMed
Ekstedt, MFranzen, L EMathiesen, U LLong-term follow-up of patients with NAFLD and elevated liver enzymesHepatology 2006 44 865CrossRefGoogle ScholarPubMed
Cassidy, F HYokoo, TAganovic, LFatty liver disease: MR imaging techniques for the detection and quantification of liver steatosisRadiographics 2009 29 231CrossRefGoogle ScholarPubMed
Guiu, BPetit, J MLoffroy, RQuantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopyRadiology 2009 250 95CrossRefGoogle ScholarPubMed
Alla, VBonkovsky, H LIron in nonhemochromatotic liver disordersSemin Liver Dis 2005 25 461CrossRefGoogle ScholarPubMed
Ramm, G ARuddell, R GHepatotoxicity of iron overload: mechanisms of iron-induced hepatic fibrogenesisSemin Liver Dis 2005 25 433CrossRefGoogle ScholarPubMed
Niederau, CFischer, RSonnenberg, ASurvival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosisN Engl J Med 1985 313 1256CrossRefGoogle ScholarPubMed
Tsukamoto, HHorne, WKamimura, SExperimental liver cirrhosis induced by alcohol and ironJ Clin Invest 1995 96 620CrossRefGoogle ScholarPubMed
Facchini, F SHua, N WStoohs, R AEffect of iron depletion in carbohydrate-intolerant patients with clinical evidence of nonalcoholic fatty liver diseaseGastroenterology 2002 122 931CrossRefGoogle ScholarPubMed
Dixon, W TSimple proton spectroscopic imagingRadiology 1984 153 189CrossRefGoogle ScholarPubMed
Reeder, S BHargreaves, B AYu, HBrittain, J HHomodyne reconstruction and IDEAL water-fat decompositionMagn Reson Med 2005 54 586CrossRefGoogle ScholarPubMed
Fuller, SReeder, SShimakawa, AIterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) fast spin-echo imaging of the ankle: initial clinical experienceAJR Am J Roentgenol 2006 187 1442CrossRefGoogle ScholarPubMed
Hussain, H KChenevert, T LLondy, F JHepatic fat fraction: MR imaging for quantitative measurement and display – early experienceRadiology 2005 237 1048CrossRefGoogle ScholarPubMed
Yokoo, TBydder, MHamilton, GNonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 TRadiology 2009 251 67CrossRefGoogle ScholarPubMed
Qayyum, AGoh, J SKakar, SAccuracy of liver fat quantification at MR imaging: comparison of out-of-phase gradient-echo and fat-saturated fast spin-echo techniques – initial experienceRadiology 2005 237 507CrossRefGoogle ScholarPubMed
Bernard, C PLiney, G PManton, D JTurnbull, L WLangton, C MComparison of fat quantification methods: a phantom study at 3.0TJ Magn Reson Imaging 2008 27 192CrossRefGoogle ScholarPubMed
Gandon, YOlivie, DGuyader, DNon-invasive assessment of hepatic iron stores by MRILancet 2004 363 357CrossRefGoogle ScholarPubMed
St Pierre, T GClark, P RChua-Anusorn, WMeasurement and mapping of liver iron concentrations using magnetic resonance imagingAnn N Y Acad Sci 2005 1054 379CrossRefGoogle ScholarPubMed
St Pierre, T GClark, P RChua-anusorn, WNoninvasive measurement and imaging of liver iron concentrations using proton magnetic resonanceBlood 2005 105 855CrossRefGoogle ScholarPubMed
Alustiza, J MArtetxe, JCastiella, AMR quantification of hepatic iron concentrationRadiology 2004 230 479CrossRefGoogle ScholarPubMed
Chandarana, HLim, R PJensen, J HHepatic iron deposition in patients with liver disease: preliminary experience with breath-hold multiecho T2*-weighted sequenceAJR Am J Roentgenol 2009 193 1261CrossRefGoogle ScholarPubMed
Storey, PThompson, A ACarqueville, C LR2* imaging of transfusional iron burden at 3 T and comparison with 1.5TJ Magn Reson Imaging 2007 25 540CrossRefGoogle Scholar
Boll, D TMarin, DRedmon, G MZink, S IMerkle, E MPilot study assessing differentiation of steatosis hepatis, hepatic iron overload, and combined disease using two-point dixon MRI at 3 T: in vitro and in vivo results of a 2D decomposition techniqueAJR Am J Roentgenol 2010 194 964CrossRefGoogle Scholar
Hines, C DYu, HShimakawa, AT1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantomJ Magn Reson Imaging 2009 30 1215CrossRefGoogle Scholar
Thomsen, CBecker, UWinkler, KQuantification of liver fat using magnetic resonance spectroscopyMagn Reson Imaging 1994 12 487CrossRefGoogle ScholarPubMed
Kuo, Y TLi, C WChen, C YIn vivo proton magnetic resonance spectroscopy of large focal hepatic lesions and metabolite change of hepatocellular carcinoma before and after transcatheter arterial chemoembolization using 3.0-T MR scannerJ Magn Reson Imaging 2004 19 598CrossRefGoogle ScholarPubMed
Taouli, BKoh, D MDiffusion-weighted MR imaging of the liverRadiology 2010 254 47CrossRefGoogle ScholarPubMed
Parikh, TDrew, S JLee, V SFocal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imagingRadiology 2008 246 812CrossRefGoogle ScholarPubMed
Taouli, BTolia, A JLosada, MDiffusion-weighted MRI for quantification of liver fibrosis: preliminary experienceAJR Am J Roentgenol 2007 189 799CrossRefGoogle ScholarPubMed
Lewin, MPoujol-Robert, ABoelle, P YDiffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis CHepatology 2007 46 658CrossRefGoogle ScholarPubMed
Taouli, BChouli, MMartin, A JChronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammationJ Magn Reson Imaging 2008 28 89CrossRefGoogle Scholar
Patel, JSigmund, E ERusinek, HDiagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: preliminary experienceJ Magn Reson Imaging 2010 31 589CrossRefGoogle ScholarPubMed
Hunsche, SMoseley, M EStoeter, PHedehus, MDiffusion-tensor MR imaging at 1.5 and 3.0T: initial observationsRadiology 2001 221 550CrossRefGoogle Scholar
Kuhl, C KTextor, JGieseke, JAcute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative studyRadiology 2005 234 509CrossRefGoogle ScholarPubMed
Huisman, T ALoenneker, TBarta, GQuantitative diffusion tensor MR imaging of the brain: field strength related variance of apparent diffusion coefficient (ADC) and fractional anisotropy (FA) scalarsEur Radiol 2006 16 1651CrossRefGoogle ScholarPubMed
Dale, B MBraithwaite, A CBoll, D TMerkle, E MField strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomenInvest Radiol 2010 45 104CrossRefGoogle ScholarPubMed
Rosenkrantz, A BOei, MBabb, J SNiver, B ETaouli, B
Deng, JLarson, A CModified PROPELLER approach for T2-mapping of the abdomenMagn Reson Med 2009 61 1269CrossRefGoogle ScholarPubMed
Deng, JMiller, F HSalem, ROmary, R ALarson, A CMultishot diffusion-weighted PROPELLER magnetic resonance imaging of the abdomenInvest Radiol 2006 41 769CrossRefGoogle ScholarPubMed
Deng, JOmary, R ALarson, A CMultishot diffusion-weighted SPLICE PROPELLER MRI of the abdomenMagn Reson Med 2008 59 947CrossRefGoogle ScholarPubMed
Ding, STrillaud, HYongbi, MHigh resolution renal diffusion imaging using a modified steady-state free precession sequenceMagn Reson Med 1995 34 586CrossRefGoogle ScholarPubMed
Jeong, E KKim, S EParker, D LHigh-resolution diffusion-weighted 3D MRI, using diffusion-weighted driven-equilibrium (DW-DE) and multishot segmented 3D-SSFP without navigator echoesMagn Reson Med 2003 50 821CrossRefGoogle ScholarPubMed
Hagiwara, MRusinek, HLee, V SAdvanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging – initial experienceRadiology 2008 246 926CrossRefGoogle ScholarPubMed
Do, R KRusinek, HTaouli, BDynamic contrast-enhanced MR imaging of the liver: current status and future directionsMagn Reson Imaging Clin N Am 2009 17 339CrossRefGoogle ScholarPubMed
Vernickel, PRoschmann, PFindeklee, CEight-channel transmit/receive body MRI coil at 3 TMagn Reson Med 2007 58 381CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×