Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-20T00:05:49.125Z Has data issue: false hasContentIssue false

Chapter 5 - Abdominal and pelvic MR angiography

Published online by Cambridge University Press:  05 August 2011

Ihab R. Kamel
Affiliation:
The Johns Hopkins University School of Medicine
Elmar M. Merkle
Affiliation:
Duke University School of Medicine, North Carolina
Get access

Summary

Introduction

Contrast-enhanced magnetic resonance angiography (CE-MRA) of the abdominal and pelvic vessels has evolved into the diagnostic modality of choice for various clinical indications ranging from suspected aortic dissection over portal-venous diseases to renovascular diseases and renal transplant surveillance [1–3]. Imaging of the renal arteries in hypertensive patients to rule out renal artery stenosis is by far the most common indication for abdominal MRA followed by diseases of the aorta such as aneurysms and aortitis as well as diseases of the mesenteric vessels. MRA of the abdominal vessels is also performed as part of peripheral run-off studies and part of whole-body MRA in patients with diabetes mellitus and/or generalized atherosclerosis [4].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Leiner, T.Magnetic resonance angiography of abdominal and lower extremity vasculatureTop Magn Reson Imaging 2005 16 21CrossRefGoogle ScholarPubMed
Schoenberg, SORieger, JNittka, MRenal MR angiography: current debates and developments in imaging of renal artery stenosisSemin Ultrasound CT MR 2003 24 255CrossRefGoogle ScholarPubMed
Gufler, HWeimer, WNeu, KContrast enhanced MR angiography with parallel imaging in the early period after renal transplantationJ Magn Reson Imaging 2009 29 909CrossRefGoogle ScholarPubMed
Michaely, HJDietrich, ONael, KMRA of abdominal vessels: technical advancesEur Radiol 2006 16 1637CrossRefGoogle ScholarPubMed
Wyttenbach, RBraghetti, AWyss, MRenal artery assessment with nonenhanced steady-state free precession versus contrast-enhanced MR angiographyRadiology 2007 245 186CrossRefGoogle ScholarPubMed
Vosshenrich, RFischer, UContrast-enhanced MR angiography of abdominal vessels: is there still a role for angiography?Eur Radiol 2002 12 218CrossRefGoogle Scholar
Vasbinder, GMaki, JNijenhuis, RMotion of the distal renal artery during 3D contrast-enhanced breath-hold MRAJ Magn Reson Imaging 2002 16 685CrossRefGoogle Scholar
Hoogeveen, RMBakker, CJViergever, MALimits to the accuracy of vessel diameter measurement in MR angiographyJ Magn Reson Imaging 1998 8 1228CrossRefGoogle ScholarPubMed
Michaely, HJHerrmann, KAKramer, HHigh-resolution renal MRA: Comparison of image quality and vessel depiction with different parallel imaging acceleration factorsJ Magn Reson Imaging 2006 24 95CrossRefGoogle ScholarPubMed
Wilson, GJEubank, WBVasbinder, GBUtilizing SENSE to reduce scan duration in high-resolution contrast-enhanced renal MR angiographyJ Magn Reson Imaging 2006 24 873CrossRefGoogle ScholarPubMed
Born, MWillinek, WAGieseke, JSensitivity encoding (SENSE) for contrast-enhanced 3D MR angiography of the abdominal arteriesJ Magn Reson Imaging 2005 22 559CrossRefGoogle ScholarPubMed
Schoenberg, SORieger, JWeber, CHHigh-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and USRadiology 2005 235 687CrossRefGoogle ScholarPubMed
Campeau, NGHuston, JBernstein, MAMagnetic resonance angiography at 3.0 Tesla: initial clinical experienceTop Magn Reson Imaging 2001 12 183CrossRefGoogle ScholarPubMed
Merkle, EMDale, BMPaulson, EKAbdominal MR imaging at 3TMagn Reson Imaging Clin N Am 2006 14 17CrossRefGoogle ScholarPubMed
de Bazelaire, CMDuhamel, GDRofsky, NMMR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary resultsRadiology 2004 230 652CrossRefGoogle Scholar
Rohrer, MBauer, HMintorovitch, JComparison of magnetic properties of MRI contrast media solutions at different magnetic field strengthsInvest Radiol 2005 40 715CrossRefGoogle ScholarPubMed
Schoenberg, SOKnopp, MVLondy, FMorphologic and functional magnetic resonance imaging of renal artery stenosis: a multireader tricenter studyJ Am Soc Nephrol 2002 13 158Google ScholarPubMed
Michaely, HJSchoenberg, SOOesingmann, NRenal artery stenosis: functional assessment with dynamic MR perfusion measurements – feasibility studyRadiology 2006 238 586CrossRefGoogle ScholarPubMed
Merkle, EMDale, BMAbdominal MR imaging at 3T: the basics revisitedAJR Am J Roentgenol 2006 186 1524CrossRefGoogle Scholar
Fain, SBKing, BFBreen, JFHigh-spatial-resolution contrast-enhanced MR angiography of the renal arteries: a prospective comparison with digital subtraction angiographyRadiology 2001 218 481CrossRefGoogle ScholarPubMed
Michaely, HJNael, KSchoenberg, SOThe feasibility of spatial high-resolution magnetic resonance angiography (MRA) of the renal arteries at 3TRofo 2005 177 800CrossRefGoogle Scholar
Griswold, MAJakob, PMHeidemann, RMGeneralized autocalibrating partially parallel acquisitions (GRAPPA)Magn Reson Med 2002 47 1202CrossRefGoogle Scholar
Pruessmann, KPWeiger, MScheidegger, MBSENSE: sensitivity encoding for fast MRIMagn Reson Med 1999 42 9523.0.CO;2-S>CrossRefGoogle ScholarPubMed
Fenchel, MNael, KDeshpande, VSRenal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directionsInvest Radiol 2006 41 697CrossRefGoogle ScholarPubMed
Ho, LMMerkle, EMPaulson, EKContrast-enhanced hepatic magnetic resonance angiography at 3T: does parallel imaging improve image quality?J Comput Assist Tomogr 2007 31 177CrossRefGoogle Scholar
Lum, DPBusse, RFFrancois, CJIncreased volume of coverage for abdominal contrast-enhanced MR angiography with two-dimensional autocalibrating parallel imaging: initial experience at 3.0 TeslaJ Magn Reson Imaging 2009 30 1093CrossRefGoogle ScholarPubMed
Finn, JPBaskaran, VCarr, JCThorax: low-dose contrast-enhanced three-dimensional MR angiography with subsecond temporal resolution – initial resultsRadiology 2002 224 896CrossRefGoogle ScholarPubMed
Huppertz, ARohrer, M.Gadobutrol, a highly concentrated MR-imaging contrast agent: its physicochemical characteristics and the basis for its use in contrast-enhanced MR angiography and perfusion imagingEur Radiol 2004 14 M12Google ScholarPubMed
Tombach, BHeindel, W.Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrolEur Radiol 2002 12 1550CrossRefGoogle ScholarPubMed
Goyen, MHerborn, CUVogt, FMUsing a 1 M Gd-chelate (gadobutrol) for total-body three-dimensional MR angiography: preliminary experienceJ Magn Reson Imaging 2003 17 565CrossRefGoogle ScholarPubMed
Herborn, CULauenstein, TCRuehm, SGIntraindividual comparison of gadopentetate dimeglumine, gadobenate dimeglumine, and gadobutrol for pelvic 3D magnetic resonance angiographyInvest Radiol 2003 38 27CrossRefGoogle ScholarPubMed
Wikstrom, JWasser, MNPattynama, PMGadobenate dimeglumine-enhanced magnetic resonance angiography of the pelvic arteriesInvest Radiol 2003 38 504CrossRefGoogle ScholarPubMed
Goyen, MDebatin, JFGadobenate dimeglumine (MultiHance) for magnetic resonance angiography: review of the literatureEur Radiol 2003 13 N19CrossRefGoogle ScholarPubMed
Hadizadeh, DRVon Falkenhausen, MKukuk, GMContrast material for abdominal dynamic contrast-enhanced 3D MR angiography with parallel imaging: intraindividual equimolar comparison of a macrocyclic 1.0 M gadolinium chelate and a linear ionic 0.5 M gadolinium chelateAJR Am J Roentgenol 2010 194 821CrossRefGoogle Scholar
Goyen, MLauenstein, TCHerborn, CU0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiographyJ Magn Reson Imaging 2001 14 602CrossRefGoogle ScholarPubMed
Goyen, MEdelman, MPerreault, PMR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325Radiology 2005 236 825CrossRefGoogle ScholarPubMed
Huppertz, AKroll, HKlessen, CBiphasic blood pool contrast agent-enhanced whole-body MR angiography for treatment planning in patients with significant arterial stenosisInvest Radiol 2009 44 422CrossRefGoogle ScholarPubMed
Nikolaou, KKramer, HGrosse, CHigh-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experienceRadiology 2006 241 861CrossRefGoogle ScholarPubMed
Nissen, JCAttenberger, UIFink, CThoracic and abdominal MRA with gadofosveset: influence of injection rate on vessel signal and image qualityEur Radiol 2009 19 1932CrossRefGoogle ScholarPubMed
Herborn, CURunge, VMWatkins, DMGendron, JMNaul, LGMR angiography of the renal arteries: intraindividual comparison of double-dose contrast enhancement at 1.5T with standard dose at 3TAJR Am J Roentgenol 2008 190 173CrossRefGoogle Scholar
Michaely, HJHerrmann, KANael, KFunctional renal imaging: nonvascular renal diseaseAbdom Imaging 2007 32 1CrossRefGoogle ScholarPubMed
Michaely, HJKramer, HDietrich, OIntraindividual comparison of high-spatial-resolution abdominal MR angiography at 1.5T and 3T: initial experienceRadiology 2007 244 907CrossRefGoogle Scholar
Grobner, TGadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?Nephrol Dial Transplant 2006 21 1104CrossRefGoogle ScholarPubMed
SadowskiEA, EA,Bennett, LKChan, MRNephrogenic systemic fibrosis: risk factors and incidence estimationRadiology 2007 243 148CrossRefGoogle ScholarPubMed
Broome, DRGirguis, MSBaron, PWGadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concernedAJR Am J Roentgenol 2007 188 586CrossRefGoogle ScholarPubMed
Liu, XBerg, NSheehan, JRenal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precessionRadiology 2009 251 535CrossRefGoogle ScholarPubMed
Lanzman, RSVoiculescu, AWalther, CECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSARadiology 2009 252 914CrossRefGoogle ScholarPubMed
Lanzman, RSKropil, PSchmitt, PNonenhanced free-breathing ECG-gated steady-state free precession 3D MR angiography of the renal arteries: comparison between 1.5T and 3TAJR Am J Roentgenol 2010 194 794CrossRefGoogle Scholar
Safian, RDTextor, SCRenal-artery stenosisN Engl J Med 2001 344 431CrossRefGoogle ScholarPubMed
Klatte, ECWorrell, JAForster, JHDiagnostic criteria of bilateral renovascular hypertensionRadiology 1971 101 301CrossRefGoogle ScholarPubMed
Sawicki, PTKaiser, SHeinemann, LPrevalence of renal artery stenosis in diabetes mellitus – an autopsy studyJ Intern Med 1991 229 489CrossRefGoogle ScholarPubMed
Rihal, CSTextor, SCBreen, JFIncidental renal artery stenosis among a prospective cohort of hypertensive patients undergoing coronary angiographyMayo Clin Proc 2002 77 309CrossRefGoogle ScholarPubMed
Harding, MBSmith, LRHimmelstein, SIRenal artery stenosis: prevalence and associated risk factors in patients undergoing routine cardiac catheterizationJ Am Soc Nephrol 1992 2 1608Google ScholarPubMed
Olin, JWMelia, MYoung, JRPrevalence of atherosclerotic renal artery stenosis in patients with atherosclerosis elsewhereAm J Med 1990 88 46NGoogle ScholarPubMed
Wachtell, KIbsen, HOlsen, MHPrevalence of renal artery stenosis in patients with peripheral vascular disease and hypertensionJ Hum Hypertens 1996 10 83Google ScholarPubMed
Textor, SC.Epidemiology and clinical presentationSemin Nephrol 2000 20 426Google ScholarPubMed
Scoble, JEHamilton, GAtherosclerotic renovascular diseaseBMJ 1990 300 1670CrossRefGoogle ScholarPubMed
Slovut, DPOlin, JW.Fibromuscular dysplasiaN Engl J Med 2004 350 1862CrossRefGoogle ScholarPubMed
Thornton, JO'Callaghan, JWalshe, JComparison of digital subtraction angiography with gadolinium-enhanced magnetic resonance angiography in the diagnosis of renal artery stenosisEur Radiol 1999 9 930CrossRefGoogle Scholar
Leung, DAHoffmann, UPfammatter, TMagnetic resonance angiography versus duplex sonography for diagnosing renovascular diseaseHypertension 1999 33 726CrossRefGoogle ScholarPubMed
Wasser, MNWestenberg, Jvan der Hulst, VPHemodynamic significance of renal artery stenosis: digital subtraction angiography versus systolically gated three-dimensional phase-contrast MR angiographyRadiology 1997 202 333CrossRefGoogle ScholarPubMed
Tan, KTvan Beek, EJBrown, PWMagnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysisClin Radiol 2002 57 617CrossRefGoogle Scholar
Vasbinder, GBNelemans, PJKessels, AGAccuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosisAnn Intern Med 2004 141 674CrossRefGoogle ScholarPubMed
Kramer, UNael, KLaub, GHigh-resolution magnetic resonance angiography of the renal arteries using parallel imaging acquisition techniques at 3T: initial experienceInvest Radiol 2006 41 125CrossRefGoogle Scholar
Li, LPVu, ATLi, BSEvaluation of intrarenal oxygenation by BOLD MRI at 3.0 TJ Magn Reson Imaging 2004 20 901CrossRefGoogle ScholarPubMed
Michaely, HJKramer, HOesingmann, NIntraindividual comparison of MR-renal perfusion imaging at 1.5 T and 3.0 TInvest Radiol 2007 42 406CrossRefGoogle Scholar
Michaely, HJSchoenberg, SORieger, JRMR angiography in patients with renal diseaseMagn Reson Imaging Clin N Am 2005 13 131CrossRefGoogle ScholarPubMed
Attenberger, UISourbron, SPSchoenberg, SOComprehensive MR evaluation of renal disease: added clinical value of quantified renal perfusion values over single MR angiographyJ Magn Reson Imaging 2010 31 125CrossRefGoogle ScholarPubMed
Meaney, JRidgway, JChakraverty, SStepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experienceRadiology 1999 211 59CrossRefGoogle ScholarPubMed
Vogt, FMZenge, MOLadd, MEPeripheral vascular disease: comparison of continuous MR angiography and conventional MR angiography – pilot studyRadiology 2007 243 229CrossRefGoogle ScholarPubMed
Voth, MHaneder, SHuck, KPeripheral magnetic resonance angiography with continuous table movement in combination with high spatial and temporal resolution time-resolved MRA with a total single dose (0.1 mmol/kg) of gadobutrol at 3TInvest Radiol 2009 44 627CrossRefGoogle Scholar
Schoenberg, SOWunsch, CKnopp, MVAbdominal aortic aneurysm. Detection of multilevel vascular pathology by time-resolved multiphase 3D gadolinium MR angiography: initial reportInvest Radiol 1999 34 648CrossRefGoogle ScholarPubMed
Michaely, HJNael, KSchoenberg, SORenal perfusion: comparison of saturation-recovery TurboFLASH measurements at 1.5T with saturation-recovery Turbo FLASH and time-resolved echo-shared angiographic technique (TREAT) at 3.0 TJ Magn Reson Imaging 2006 24 1413CrossRefGoogle Scholar
Nael, KKrishnam, MRuehm, SGTime-resolved MR angiography in the evaluation of central thoracic venous occlusive diseaseAJR Am J Roentgenol 2009 192 1731CrossRefGoogle ScholarPubMed
Korosec, FRFrayne, RGrist, TMTime-resolved contrast-enhanced 3D MR angiographyMagn Reson Med 1996 36 345CrossRefGoogle ScholarPubMed
von Tengg-Kobligk, HLey-Zaporozhan, JHenninger, VIntraindividual assessment of the thoracic aorta using contrast and non-contrast-enhanced MR angiographyRofo 2009 181 230CrossRefGoogle ScholarPubMed
Cornelissen, SAProkop, MVerhagen, HJDetection of occult endoleaks after endovascular treatment of abdominal aortic aneurysm using magnetic resonance imaging with a blood pool contrast agent: preliminary observationsInvest Radiol 2010 45 548CrossRefGoogle ScholarPubMed
Ruehm, SGMR venographyEur Radiol 2003 13 229Google ScholarPubMed
Nastri, MVBaptista, LPBaroni, RHGadolinium-enhanced three-dimensional MR angiography of Takayasu arteritisRadiographics 2004 24 773CrossRefGoogle ScholarPubMed
Edelman, RRStorey, PDunkle, EGadolinium-enhanced off-resonance contrast angiographyMagn Reson Med 2007 57 475CrossRefGoogle ScholarPubMed
Carrillo, AShankaranarayanan, AGurr, DScoutless abdominal angiography at 3 Tesla with two-dimensional accelerationProceedings 13th Scientific Meeting, International Society for Magnetic Resonance in MedicineSeattle 2006 1930Google Scholar
Reeder, SBHargreaves, BAYu, HHomodyne reconstruction and IDEAL water-fat decompositionMagn Reson Med 2005 54 586CrossRefGoogle ScholarPubMed
Reeder, SBMcKenzie, CAPineda, ARWater-fat separation with IDEAL gradient echo imagingJ Magn Reson Imaging 2007 25 644CrossRefGoogle ScholarPubMed
Spuentrup, EBuecker, AMeyer, JNavigator-gated free-breathing 3D balanced FFE projection renal MRA: comparison with contrast-enhanced breath-hold 3D MRA in a swine modelMagn Reson Med 2002 48 739CrossRefGoogle Scholar
Hilfiker, PRWeishaupt, DKacl, GMComparison of three dimensional magnetic resonance imaging in conjunction with a blood pool contrast agent and nuclear scintigraphy for the detection of experimentally induced gastrointestinal bleedingGut 1999 45 581CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×