Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T07:04:57.903Z Has data issue: false hasContentIssue false

32 - Infectious complications in leukemia

from Section 4 - Complications and supportive care

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

Infections remain the major cause of morbidity and mortality in children with cancer in general and with hematologic malignancies in particular. That is because their defense mechanisms, already weakened by the underlying malignancy, are further compromised by the therapeutic cytotoxic chemotherapy. Typically, since the 1960s, the risk of infection has been inversely related to the absolute neutrophil count and the duration of neutropenia. However, as new mechanisms are being targeted by the advancing discoveries in anti-leukemia chemotherapy, other components of the immune system have become compromised including the complement cascade and immunoglobulin producing B-lymphocytes, T-lymphocytes, and monocytes/macrophages.

Risk factors for infections in children with leukemia

Numerous factors contribute to the decreased efficacy of the host defense mechanisms in patients with leukemia. These factors include disruption of the skin and mucous membrane physical barriers, impaired function of the immune system, dysfunction of the cytokine mediators, and altered normal microbiologic flora.

Type
Chapter
Information
Childhood Leukemias , pp. 772 - 793
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodey, GP, Buckley, M, Sathe, YS, Freireich, EJ. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 1966;64:328–340.CrossRefGoogle ScholarPubMed
Bodey, GP, Rodriguez, V, Narboni, Chang HY. Fever and infection in leukemic patients: a study of 494 consecutive patients. Cancer 1978;41:1610–1622.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Coiffier, B, Frobert, Y, Revol, L. Polymorphonuclear function in acute myeloblastic leukemia. Biomedicine 1977;27:94–96.Google ScholarPubMed
Powell, BL, Olbrantz, P, Bicket, D, Bass, DA. Altered oxidative product formation in neutrophils of patients recovering from therapy for acute leukemia. Blood 1986;67:1624–1630.Google ScholarPubMed
Abrahamsson, J, Marky, I, Mellander, L. Immunoglobulin levels and lymphocyte response to mitogenic stimulation in children with malignant disease during treatment and follow-up. Acta Paediatr 1995;84:177–182.CrossRefGoogle ScholarPubMed
Lehrnbecher, T, Foster, C, Vazquez, N, Mackall, CL, Chanock, SJ. Therapy-induced alterations in host defense in children receiving therapy for cancer. J Pediatr Hematol Oncol 1997;19:399–417.CrossRefGoogle ScholarPubMed
Chanock, S.Evolving risk factors for infectious complications of cancer therapy. Hematol Oncol Clin North Am 1993;7:771–793.CrossRefGoogle ScholarPubMed
Hakim, H, Flynn, PM, Knapp, KM, Srivastava, DK, Gaur, AH. Etiology and clinical course of febrile neutropenia in children with cancer. J Pediatr Hematol Oncol 2009;31:623–629.CrossRefGoogle ScholarPubMed
Santolaya, ME, Alvarez, AM, Aviles, CL, et al. Prospective evaluation of a model of prediction of invasive bacterial infection risk among children with cancer, fever, and neutropenia. Clin Infect Dis 2002;35:678–683.CrossRefGoogle Scholar
Klaassen, RJ, Goodman, TR, Pham, B, Doyle, JJ. “Low-risk” prediction rule for pediatric oncology patients presenting with fever and neutropenia. J Clin Oncol 2000;18:1012–1019.CrossRefGoogle ScholarPubMed
Ammann, RA, Hirt, A, Luthy, AR, Aebi, C. Predicting bacteremia in children with fever and chemotherapy-induced neutropenia. Pediatr Infect Dis J 2004;23:61–67.CrossRefGoogle ScholarPubMed
Sherertz, RJ, Raad, II, Belani, A, et al. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J Clin Microbiol 1990;28:76–82.Google Scholar
Viscoli, C, Garaventa, A, Boni, L, et al. Role of Broviac catheters in infections in children with cancer. Pediatr Infect Dis J 1988;7:556–560.Google ScholarPubMed
Mermel, LA, Farr, BM, Sherertz, RJ, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 2001;32:1249–1272.CrossRefGoogle ScholarPubMed
Mermel, LA, Allon, M, Bouza, E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009;49:1–45.CrossRefGoogle ScholarPubMed
Raad, I, Hanna, H, Maki, D. Intravascular catheter-related infections: advances in diagnosis, prevention, and management. Lancet Infect Dis 2007;7: 645–657.CrossRefGoogle Scholar
Safdar, N, Fine, JP, Maki, DG. Meta-analysis: methods for diagnosing intravascular device-related bloodstream infection. Ann Intern Med 2005;142:451–466.CrossRefGoogle ScholarPubMed
Rushforth, JA, Hoy, CM, Kite, P, Puntis, JW. Rapid diagnosis of central venous catheter sepsis. Lancet 1993;342:402–403.CrossRefGoogle ScholarPubMed
Franklin, JA, Gaur, AH, Shenep, JL, Hu, XJ, Flynn, PM. In situ diagnosis of central venous catheter-related bloodstream infection without peripheral blood culture. Pediatr Infect Dis J 2004;23:614–618.CrossRefGoogle ScholarPubMed
Gaur, AH, Flynn, PM, Heine, DJ, et al. Diagnosis of catheter-related bloodstream infections among pediatric oncology patients lacking a peripheral culture, using differential time to detection. Pediatr Infect Dis J 2005;24:445–449.CrossRefGoogle ScholarPubMed
Gaur, AH, Flynn, PM, Giannini, MA, Shenep, JL, Hayden, RT. Difference in time to detection: a simple method to differentiate catheter-related from non-catheter-related bloodstream infection in immunocompromised pediatric patients. Clin Infect Dis 2003;37:469–475.CrossRefGoogle ScholarPubMed
Malgrange, VB, Escande, MC, Theobald, S. Validity of earlier positivity of central venous blood cultures in comparison with peripheral blood cultures for diagnosing catheter-related bacteremia in cancer patients. J Clin Microbiol 2001;39:274–278.CrossRefGoogle ScholarPubMed
Blot, F, Nitenberg, G, Chachaty, E, et al. Diagnosis of catheter-related bacteraemia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 1999;354:1071–1077.CrossRefGoogle ScholarPubMed
Bouza, E, Burillo, A, Munoz, P. Catheter-related infections: diagnosis and intravascular treatment. Clin Microbiol Infect 2002;8:265–274.CrossRefGoogle ScholarPubMed
Cooper, GL, Hopkins, CC. Rapid diagnosis of intravascular catheter-associated infection by direct Gram staining of catheter segments. N Engl J Med 1985;312:1142–1147.CrossRefGoogle ScholarPubMed
Zufferey, J, Rime, B, Francioli, P, Bille, J. Simple method for rapid diagnosis of catheter-associated infection by direct acridine orange staining of catheter tips. J Clin Microbiol 1988;26:175–177.Google ScholarPubMed
Rossini, F, Verga, M, Pioltelli, P, et al. Incidence and outcome of pneumonia in patients with acute leukemia receiving first induction therapy with anthracycline-containing regimens. Haematologica 2000;85:1255–1260.Google ScholarPubMed
Sepkowitz, KA. Pneumocystis carinii pneumonia among patients with neoplastic disease. Semin Respir Infect 1992;7:114–121.Google ScholarPubMed
Sepkowitz, KA, Brown, AE, Telzak, EE, Gottlieb, S, Armstrong, D. Pneumocystis carinii pneumonia among patients without AIDS at a cancer hospital. JAMA 1992;267:832–837.CrossRefGoogle Scholar
Soubani, AO, Miller, KB, Hassoun, PM. Pulmonary complications of bone marrow transplantation. Chest 1996;109:1066–1077.CrossRefGoogle ScholarPubMed
Soubani, AO, Chandrasekar, PH. The clinical spectrum of pulmonary aspergillosis. Chest 2002;121:1988–1999.CrossRefGoogle ScholarPubMed
Heussel, CP, Kauczor, HU, Heussel, G, et al. Early detection of pneumonia in febrile neutropenic patients: use of thin-section CT. AJR Am J Roentgenol 1997;169:1347–1353.CrossRefGoogle ScholarPubMed
Caillot, D, Couaillier, JF, Bernard, A, et al. Increasing volume and changing characteristics of invasive pulmonary aspergillosis on sequential thoracic computed tomography scans in patients with neutropenia. J Clin Oncol 2001;19:253–259.CrossRefGoogle ScholarPubMed
Caillot, D, Casasnovas, O, Bernard, A, et al. Improved management of invasive pulmonary aspergillosis in neutropenic patients using early thoracic computed tomographic scan and surgery. J Clin Oncol 1997;15:139–147.CrossRefGoogle ScholarPubMed
Hofmeister, CC, Czerlanis, C, Forsythe, S, Stiff, PJ. Retrospective utility of bronchoscopy after hematopoietic stem cell transplant. Bone Marrow Transplant 2006;38:693–698.CrossRefGoogle ScholarPubMed
Westall, GP, Michaelides, A, Williams, TJ, Snell, GI, Kotsimbos, TC. Human cytomegalovirus load in plasma and bronchoalveolar lavage fluid: a longitudinal study of lung transplant recipients. J Infect Dis 2004;190:1076–1083.CrossRefGoogle ScholarPubMed
Humar, A, Lipton, J, Welsh, S, et al. A randomised trial comparing cytomegalovirus antigenemia assay vs screening bronchoscopy for the early detection and prevention of disease in allogeneic bone marrow and peripheral blood stem cell transplant recipients. Bone Marrow Transplant 2001;28:485–490.CrossRefGoogle ScholarPubMed
Zmeili, OS, Soubani, AO. Pulmonary aspergillosis: a clinical update. Quart J Med 2007;100:317–334.CrossRefGoogle ScholarPubMed
Soubani, AO, Qureshi, MA. Invasive pulmonary aspergillosis following bone marrow transplantation: risk factors and diagnostic aspect. Haematologia (Budap) 2002;32:427–437.Google ScholarPubMed
Sirithanakul, K, Salloum, A, Klein, JL, Soubani, AO. Pulmonary complications following hematopoietic stem cell transplantation: diagnostic approaches. Am J Hematol 2005;80:137–146.CrossRefGoogle ScholarPubMed
Wong, PW, Stefanec, T, Brown, K, White, DA. Role of fine-needle aspirates of focal lung lesions in patients with hematologic malignancies. Chest 2002;121:527–532.CrossRefGoogle ScholarPubMed
Cockerill, FR, 3rd, Wilson, WR, Carpenter, HA, Smith, TF, Rosenow, EC, 3rd. Open lung biopsy in immunocompromised patients. Arch Intern Med 1985;145: 1398–1404.CrossRefGoogle ScholarPubMed
Zihlif, M, Khanchandani, G, Ahmed, HP, Soubani, AO. Surgical lung biopsy in patients with hematological malignancy or hematopoietic stem cell transplantation and unexplained pulmonary infiltrates: improved outcome with specific diagnosis. Am J Hematol 2005;78:94–99.CrossRefGoogle ScholarPubMed
Iwen, PC, Rupp, ME, Hinrichs, SH. Invasive mold sinusitis: 17 cases in immunocompromised patients and review of the literature. Clin Infect Dis 1997;24:1178–1184.CrossRefGoogle ScholarPubMed
Kavanagh, KT, Hughes, WT, Parham, DM, Chanin, LR. Fungal sinusitis in immunocompromised children with neoplasms. Ann Otol Rhinol Laryngol 1991;100:331–336.CrossRefGoogle ScholarPubMed
Guevara, N, Roy, D, Dutruc-Rosset, C, et al. Mucormycosis: early diagnosis and treatment. Rev Laryngol Otol Rhinol 2004;125:127–131.Google ScholarPubMed
Alobid, I, Bernal, M, Calvo, C, et al. Treatment of rhinocerebral mucormycosis by combination of endoscopic sinus debridement and amphotericin B. Am J Rhinol 2001;15:327–331.Google ScholarPubMed
Pappas, PG, Kauffman, CA, Andes, D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009;48:503–535.CrossRefGoogle ScholarPubMed
Glenny, AM, Fernandez, Mauleffinch LM, Pavitt, S, Walsh, T. Interventions for the prevention and treatment of herpes simplex virus in patients being treated for cancer. Cochrane Database Syst Rev 2009;(1):CD006706.CrossRefGoogle ScholarPubMed
Conant, MA, Schacker, TW, Murphy, RL, et al. Valaciclovir versus aciclovir for herpes simplex virus infection in HIV-infected individuals: two randomized trials. Int J STD AIDS 2002;13:12–21.CrossRefGoogle ScholarPubMed
Tyring, SK, Beutner, KR, Tucker, BA, Anderson, WC, Crooks, RJ. Antiviral therapy for herpes zoster: randomized, controlled clinical trial of valacyclovir and famciclovir therapy in immunocompetent patients 50 years and older. Arch Fam Med 2000;9:863–869.CrossRefGoogle ScholarPubMed
LeBlanc, RA, Pesnicak, L, Godleski, M, Straus, SE. The comparative effects of famciclovir and valacyclovir on herpes simplex virus type 1 infection, latency, and reactivation in mice. J Infect Dis 1999;180:594–599.CrossRefGoogle ScholarPubMed
Madan, K, Batra, Y, Jha, JK, et al. Clinical relevance of HBV DNA load in patients with chronic hepatitis B infection. Trop Gastroenterol 2008;29:84–90.Google ScholarPubMed
Kimberlin, DW.Antiviral therapy for cytomegalovirus infections in pediatric patients. Semin Pediatr Infect Dis 2002;13:22–30.CrossRefGoogle ScholarPubMed
Balsano, C, Alisi, A. Viral hepatitis B: established and emerging therapies. Curr Med Chem 2008;15:930–939.CrossRefGoogle ScholarPubMed
Davies, AP, Chalmers, RM. Cryptosporidiosis. BMJ 2009;339: b4168.CrossRefGoogle ScholarPubMed
Amadi, B, Mwiya, M, Musuku, J, et al. Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet 2002;360:1375–1380.CrossRefGoogle ScholarPubMed
Mylonakis, E, Ryan, ET, Calderwood, SB. Clostridium difficile-associated diarrhea: a review. Arch Intern Med 2001;161:525–533.CrossRefGoogle ScholarPubMed
Lyras, D, O'Connor, JR, Howarth, PM, et al. Toxin B is essential for virulence of Clostridium difficile. Nature 2009;458:1176–1179.CrossRefGoogle ScholarPubMed
Kelly, CP, LaMont, JT. Clostridium difficile: more difficult than ever. N Engl J Med 2008;359:1932–1940.CrossRefGoogle Scholar
Bauer, MP, Veenendaal, D, Verhoef, L, et al. Clinical and microbiological characteristics of community-onset Clostridium difficile infection in the Netherlands. Clin Microbiol Infect 2009;15:1087–1092.CrossRefGoogle ScholarPubMed
Janka, J, O'Grady, NP. Clostridium difficile infection: current perspectives. Curr Opin Crit Care 2009;15:149–153.CrossRefGoogle ScholarPubMed
Davila, ML. Neutropenic enterocolitis. Curr Opin Gastroenterol 2006;22:44–47.Google ScholarPubMed
Schlatter, M, Snyder, K, Freyer, D. Successful nonoperative management of typhlitis in pediatric oncology patients. J Pediatr Surg 2002;37:1151–1155.CrossRefGoogle ScholarPubMed
Grois, N, Mostbeck, G, Scherrer, R, et al. Hepatic and splenic abscesses: a common complication of intensive chemotherapy of acute myeloid leukemia (AML). A prospective study. Ann Hematol 1991;63:33–38.CrossRefGoogle ScholarPubMed
Anttila, VJ, Elonen, E, Nordling, S, et al. Hepatosplenic candidiasis in patients with acute leukemia: incidence and prognostic implications. Clin Infect Dis 1997;24:375–380.CrossRefGoogle ScholarPubMed
Sallah, S, Semelka, RC, Wehbie, R, et al. Hepatosplenic candidiasis in patients with acute leukaemia. Br J Haematol 1999;106:697–701.CrossRefGoogle ScholarPubMed
Rossetti, F, Brawner, DL, Bowden, R, et al. Fungal liver infection in marrow transplant recipients: prevalence at autopsy, predisposing factors, and clinical features. Clin Infect Dis 1995;20:801–811.CrossRefGoogle ScholarPubMed
Bjerke, JW, Meyers, JD, Bowden, RA. Hepatosplenic candidiasis: a contraindication to marrow transplantation? Blood 1994;84:2811–2814.Google ScholarPubMed
Kontoyiannis, DP, Luna, MA, Samuels, BI, Bodey, GP. Hepatosplenic candidiasis. A manifestation of chronic disseminated candidiasis. Infect Dis Clin North Am 2000;14:721–739.CrossRefGoogle ScholarPubMed
Masood, A, Sallah, S. Chronic disseminated candidiasis in patients with acute leukemia: emphasis on diagnostic definition and treatment. Leuk Res 2005;29:493–501.CrossRefGoogle ScholarPubMed
Johnson, TL, Barnett, JL, Appelman, HD, Nostrant, T. Candida hepatitis. Histopathologic diagnosis. Am J Surg Pathol 1988;12:716–720.CrossRefGoogle ScholarPubMed
Schmidt-Hieber, M, Zweigner, J, et al. Central nervous system infections in immunocompromised patients: update on diagnostics and therapy. Leuk Lymphoma 2009;50:24–36.CrossRefGoogle ScholarPubMed
Chayakulkeeree, M, Perfect, JR. Cryptococcosis. Infect Dis Clin North Am 2006;20:507–544.CrossRefGoogle ScholarPubMed
Leggiadro, RJ, Barrett, FF, Hughes, WT. Extrapulmonary cryptococcosis in immunocompromised infants and children. Pediatr Infect Dis J 1992;11:43–47.CrossRefGoogle ScholarPubMed
Perfect, JR, Dismukes, WE, Dromer, F, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 2010;50:291–322.CrossRefGoogle ScholarPubMed
Vidal, JE, Colombo, FA, de Oliveira, AC, Focaccia, R, Pereira-Chioccola, VL. PCR assay using cerebrospinal fluid for diagnosis of cerebral toxoplasmosis in Brazilian AIDS patients. J Clin Microbiol 2004;42:4765–4768.CrossRefGoogle ScholarPubMed
Weber, T.Progressive multifocal leukoencephalopathy. Neurol Clin 2008;26:833–854.CrossRefGoogle ScholarPubMed
Åström, KE, Mancall, EL, Richardson, EP, Jr. Progressive multifocal leuko-encephalopathy; a hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin's disease. Brain 1958;81:93–111.CrossRefGoogle ScholarPubMed
Richardson-Burns, SM, Kleinschmidt-DeMasters, BK, DeBiasi, RL, Tyler, KL. Progressive multifocal leukoencephalopathy and apoptosis of infected oligodendrocytes in the central nervous system of patients with and without AIDS. Arch Neurol 2002;59:1930–1936.CrossRefGoogle ScholarPubMed
Harkensee, C, Vasdev, N, Gennery, AR, Willetts, IE, Taylor, C. Prevention and management of BK-virus associated haemorrhagic cystitis in children following haematopoietic stem cell transplantation: a systematic review and evidence-based guidance for clinical management. Br J Haematol 2008;142:717–731.CrossRefGoogle ScholarPubMed
Inaba, H, Jones, DP, Gaber, LW, et al. BK virus-induced tubulointerstitial nephritis in a child with acute lymphoblastic leukemia. J Pediatr 2007;151:215–217.CrossRefGoogle Scholar
Leung, AY, Suen, CK, Lie, AK, et al. Quantification of polyoma BK viruria in hemorrhagic cystitis complicating bone marrow transplantation. Blood 2001;98:1971–1978.CrossRefGoogle ScholarPubMed
Erard, V, Storer, B, Corey, L, et al. BK virus infection in hematopoietic stem cell transplant recipients: frequency, risk factors, and association with postengraftment hemorrhagic cystitis. Clin Infect Dis 2004;39:1861–1865.CrossRefGoogle ScholarPubMed
Josephson, MA, Gillen, D, Javaid, B, et al. Treatment of renal allograft polyoma BK virus infection with leflunomide. Transplantation 2006;81:704–710.CrossRefGoogle ScholarPubMed
Williams, JW, Javaid, B, Kadambi, PV, et al. Leflunomide for polyomavirus type BK nephropathy. N Engl J Med 2005;352:1157–1158.CrossRefGoogle ScholarPubMed
Leung, AY, Chan, MT, Yuen, KY, et al. Ciprofloxacin decreased polyoma BK virus load in patients who underwent allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2005;40:528–537.CrossRefGoogle ScholarPubMed
Kadambi, PV, Josephson, MA, Williams, J, et al. Treatment of refractory BK virus-associated nephropathy with cidofovir. Am J Transplant 2003;3:186–191.CrossRefGoogle ScholarPubMed
Vats, A, Shapiro, R, Singh, Randhawa P, et al. Quantitative viral load monitoring and cidofovir therapy for the management of BK virus-associated nephropathy in children and adults. Transplantation 2003;75:105–112.CrossRefGoogle ScholarPubMed
Gorczynska, E, Turkiewicz, D, Rybka, K, et al. Incidence, clinical outcome, and management of virus-induced hemorrhagic cystitis in children and adolescents after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 2005;11:797–804.CrossRefGoogle ScholarPubMed
Savona, MR, Newton, D, Frame, D, et al. Low-dose cidofovir treatment of BK virus-associated hemorrhagic cystitis in recipients of hematopoietic stem cell transplant. Bone Marrow Transplant 2007;39:783–787.CrossRefGoogle ScholarPubMed
Hughes, WT, Armstrong, D, Bodey, GP, et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis 2002;34:730–751.CrossRefGoogle ScholarPubMed
Vidal, L, Paul, M, Ben, dor I, Soares-Weiser, K, Leibovici, L. Oral versus intravenous antibiotic treatment for febrile neutropenia in cancer patients: a systematic review and meta-analysis of randomized trials. J Antimicrob Chemother 2004;54: 29–37.CrossRefGoogle ScholarPubMed
Shenep, JL, Flynn, PM, Baker, DK, et al. Oral cefixime is similar to continued intravenous antibiotics in the empirical treatment of febrile neutropenic children with cancer. Clin Infect Dis 2001;32:36–43.CrossRefGoogle ScholarPubMed
Petrilli, A, Altruda, Carlesse F, Alberto, PiresPereira, C. Oral gatifloxacin in the outpatient treatment of children with cancer fever and neutropenia. Pediatr Blood Cancer 2007;49:682–686.CrossRefGoogle ScholarPubMed
Petrilli, AS, Dantas, LS, Campos, MC, et al. Oral ciprofloxacin vs. intravenous ceftriaxone administered in an outpatient setting for fever and neutropenia in low-risk pediatric oncology patients: randomized prospective trial. Med Pediatr Oncol 2000;34:87–91.3.0.CO;2-F>CrossRefGoogle Scholar
Park, JR, Coughlin, J, Hawkins, D, et al. Ciprofloxacin and amoxicillin as continuation treatment of febrile neutropenia in pediatric cancer patients. Med Pediatr Oncol 2003;40:93–98.CrossRefGoogle ScholarPubMed
Paganini, HR, Sarkis, CM, De Martino, MG, et al. Oral administration of cefixime to lower risk febrile neutropenic children with cancer. Cancer 2000;88:2848–2852.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Aquino, VM, Herrera, L, Sandler, ES, Buchanan, GR. Feasibility of oral ciprofloxacin for the outpatient management of febrile neutropenia in selected children with cancer. Cancer 2000;88:1710–1714.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Klaassen, RJ, Allen, U, Doyle, JJ. Randomized placebo-controlled trial of oral antibiotics in pediatric oncology patients at low-risk with fever and neutropenia. J Pediatr Hematol Oncol 2000;22:405–411.CrossRefGoogle ScholarPubMed
Santolaya, ME, Alvarez, AM, Aviles, CL, et al. Early hospital discharge followed by outpatient management versus continued hospitalization of children with cancer, fever, and neutropenia at low risk for invasive bacterial infection. J Clin Oncol 2004;22:3784–3789.CrossRefGoogle ScholarPubMed
Aquino, VM, Buchanan, GR, Tkaczewski, I, Mustafa, MM. Safety of early hospital discharge of selected febrile children and adolescents with cancer with prolonged neutropenia. Med Pediatr Oncol 1997;28:191–195.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Aquino, VM, Tkaczewski, I, Buchanan, GR. Early discharge of low-risk febrile neutropenic children and adolescents with cancer. Clin Infect Dis 1997;25:74–78.CrossRefGoogle ScholarPubMed
Pfaller, MA, Diekema, DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 2010;36:1–53.CrossRefGoogle ScholarPubMed
Meis, JF, Chakrabarti, A. Changing epidemiology of an emerging infection: zygomycosis. Clin Microbiol Infect 2009;15(Suppl 5):10–14.CrossRefGoogle ScholarPubMed
Marr, KA. The changing spectrum of candidemia in oncology patients: therapeutic implications. Curr Opin Infect Dis 2000;13:615–620.CrossRefGoogle ScholarPubMed
Sipsas, NV, Lewis, RE, Tarrand, J, et al. Candidemia in patients with hematologic malignancies in the era of new antifungal agents (2001–2007): stable incidence but changing epidemiology of a still frequently lethal infection. Cancer 2009;115:4745–4752.CrossRefGoogle ScholarPubMed
Ruping, MJ, Heinz, WJ, Kindo, AJ, et al. Forty-one recent cases of invasive zygomycosis from a global clinical registry. J Antimicrob Chemother 2010;65:296–302.CrossRefGoogle ScholarPubMed
Dehority, W, Willert, J, Pong, A. Zygomycetes infections in pediatric hematology oncology patients: a case series and review of the literature. J Pediatr Hematol Oncol 2009;31:911–919.CrossRefGoogle ScholarPubMed
Hughes, WT. Systemic candidiasis: a study of 109 fatal cases. Pediatr Infect Dis 1982;1:11–18.CrossRefGoogle ScholarPubMed
Wingard, JR. Importance of Candida species other than C. albicans as pathogens in oncology patients. Clin Infect Dis 1995;20:115–125.CrossRefGoogle Scholar
Flynn, PM, Marina, NM, Rivera, GK, Hughes, WT. Candida tropicalis infections in children with leukemia. Leuk Lymphoma 1993;10:369–376.CrossRefGoogle ScholarPubMed
Flynn, PM, Shenep, JL, Crawford, R, Hughes, WT. Use of abdominal computed tomography for identifying disseminated fungal infection in pediatric cancer patients. Clin Infect Dis 1995;20:964–970.CrossRefGoogle ScholarPubMed
Bartley, DL, Hughes, WT, Parvey, LS, Parham, D. Computed tomography of hepatic and splenic fungal abscesses in leukemic children. Pediatr Infect Dis 1982;1:317–321.CrossRefGoogle ScholarPubMed
Flynn, PM, Cunningham, CK, Kerkering, T, et al. Oropharyngeal candidiasis in immunocompromised children: a randomized, multicenter study of orally administered fluconazole suspension versus nystatin. The Multicenter Fluconazole Study Group. J Pediatr 1995;127:322–328.CrossRefGoogle ScholarPubMed
Jensen, HE, Salonen, J, Ekfors, TO. The use of immunohistochemistry to improve sensitivity and specificity in the diagnosis of systemic mycoses in patients with haematological malignancies. J Pathol 1997;181:100–105.3.0.CO;2-O>CrossRefGoogle Scholar
Dahniya, MH, Makkar, R, Grexa, E, et al. Appearances of paranasal fungal sinusitis on computed tomography. Br J Radiol 1998;71:340–344.CrossRefGoogle ScholarPubMed
Marr, KA, Laverdiere, M, Gugel, A, Leisenring, W. Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin Infect Dis 2005;40:1762–1769.CrossRefGoogle ScholarPubMed
Marr, KA, Balajee, SA, McLaughlin, L, et al. Detection of galactomannan antigenemia by enzyme immunoassay for the diagnosis of invasive aspergillosis: variables that affect performance. J Infect Dis 2004;190:641–649.CrossRefGoogle Scholar
Boutboul, F, Alberti, C, Leblanc, T, et al. Invasive aspergillosis in allogeneic stem cell transplant recipients: increasing antigenemia is associated with progressive disease. Clin Infect Dis 2002;34:939–943.CrossRefGoogle ScholarPubMed
Pfeiffer, CD, Fine, JP, Safdar, N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis 2006;42:1417–1427.CrossRefGoogle ScholarPubMed
Maertens, J, Van Eldere, J, Verhaegen, J, et al. Use of circulating galactomannan screening for early diagnosis of invasive aspergillosis in allogeneic stem cell transplant recipients. J Infect Dis 2002;186:1297–1306.CrossRefGoogle ScholarPubMed
Meersseman, W, Lagrou, K, Maertens, J, et al. Galactomannan in bronchoalveolar lavage fluid: a tool for diagnosing aspergillosis in intensive care unit patients. Am J Respir Crit Care Med 2008;177:27–34.CrossRefGoogle ScholarPubMed
Pickering, JW, Sant, HW, Bowles, CA, Roberts, WL, Woods, GL. Evaluation of a (1→3)-beta-D-glucan assay for diagnosis of invasive fungal infections. J Clin Microbiol 2005;43:5957–5962.CrossRefGoogle ScholarPubMed
Marty, FM, Lowry, CM, Lempitski, SJ, et al. Reactivity of (1→3)-beta-d-glucan assay with commonly used intravenous antimicrobials. Antimicrob Agents Chemother 2006;50:3450–3453.CrossRefGoogle ScholarPubMed
Mennink-Kersten, MA, Ruegebrink, D, Verweij, PE. Pseudomonas aeruginosa as a cause of 1,3-beta-d-glucan assay reactivity. Clin Infect Dis 2008;46:1930–1931.CrossRefGoogle ScholarPubMed
Walsh, TJ, Anaissie, EJ, Denning, DW, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 2008;46:327–360.CrossRefGoogle ScholarPubMed
Herbrecht, R, Denning, DW, Patterson, TF, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 2002;347:408–415.CrossRefGoogle ScholarPubMed
Denning, DW, Ribaud, P, Milpied, N, et al. Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 2002;34:563–571.CrossRefGoogle ScholarPubMed
Perfect, JR, Marr, KA, Walsh, TJ, et al. Voriconazole treatment for less-common, emerging, or refractory fungal infections. Clin Infect Dis 2003;36:1122–1131.CrossRefGoogle ScholarPubMed
Walsh, TJ, Lutsar, I, Driscoll, T, et al. Voriconazole in the treatment of aspergillosis, scedosporiosis and other invasive fungal infections in children. Pediatr Infect Dis J 2002;21:240–248.CrossRefGoogle ScholarPubMed
Ryan, M, Yeo, S, Maguire, A, et al. Rhinocerebral zygomycosis in childhood acute lymphoblastic leukaemia. Eur J Pediatr 2001;160:235–238.CrossRefGoogle ScholarPubMed
Lee, FY, Mossad, SB, Adal, KA. Pulmonary mucormycosis: the last 30 years. Arch Intern Med 1999;159:1301–1309.CrossRefGoogle ScholarPubMed
Jimenez, C, Lumbreras, C, Aguado, JM, et al. Successful treatment of mucor infection after liver or pancreas-kidney transplantation. Transplantation 2002;73:476–480.CrossRefGoogle ScholarPubMed
Wingard, JR.Lipid formulations of amphotericins: are you a lumper or a splitter?Clin Infect Dis 2002;35:891–895.CrossRefGoogle ScholarPubMed
Tiphine, M, Letscher-Bru, V, Herbrecht, R. Amphotericin B and its new formulations: pharmacologic characteristics, clinical efficacy, and tolerability. Transpl Infect Dis 1999;1:273–283.CrossRefGoogle ScholarPubMed
White, MH, Bowden, RA, Sandler, ES, et al. Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis 1998;27:296–302.CrossRefGoogle ScholarPubMed
Walsh, TJ, Hiemenz, JW, Seibel, NL, et al. Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 1998;26:1383–1396.CrossRefGoogle ScholarPubMed
Walsh, TJ, Finberg, RW, Arndt, C, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Mycoses Study Group. N Engl J Med 1999;340:764–771.CrossRefGoogle ScholarPubMed
Prentice, HG, Hann, IM, Herbrecht, R, et al. A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol 1997;98:711–718.CrossRefGoogle ScholarPubMed
Wingard, JR, White, MH, Anaissie, E, et al. A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. L Amph/ABLC Collaborative Study Group. Clin Infect Dis 2000;31:1155–1163.CrossRefGoogle ScholarPubMed
Wexler, D, Courtney, R, Richards, W, et al. Effect of posaconazole on cytochrome P450 enzymes: a randomized, open-label, two-way crossover study. Eur J Pharm Sci 2004;21:645–653.CrossRefGoogle ScholarPubMed
Safdar, A.Difficulties with fungal infections in acute myelogenous leukemia patients: immune enhancement strategies. Oncologist 2007;12(Suppl 2):2–6.Google ScholarPubMed
Smith, TJ, Khatcheressian, J, Lyman, GH, et al. 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 2006;24:3187–3205.CrossRefGoogle ScholarPubMed
Kelleher, P, Goodsall, A, Mulgirigama, A, et al. Interferon-gamma therapy in two patients with progressive chronic pulmonary aspergillosis. Eur Respir J 2006;27:1307–1310.CrossRefGoogle ScholarPubMed
Safdar, A.Antifungal immunity and adjuvant cytokine immune enhancement in cancer patients with invasive fungal infections. Clin Microbiol Infect 2007;13:1–4.CrossRefGoogle ScholarPubMed
Safdar, A, Rodriguez, GH, Lichtiger, B, et al. Recombinant interferon gamma1b immune enhancement in 20 patients with hematologic malignancies and systemic opportunistic infections treated with donor granulocyte transfusions. Cancer 2006;106:2664–2671.CrossRefGoogle ScholarPubMed
Mousset, S, Hermann, S, Klein, SA, et al. Prophylactic and interventional granulocyte transfusions in patients with haematological malignancies and life-threatening infections during neutropenia. Ann Hematol 2005;84:734–741.CrossRefGoogle ScholarPubMed
Harousseau, JL, Witz, B, Lioure, B, et al. Granulocyte colony-stimulating factor after intensive consolidation chemotherapy in acute myeloid leukemia: results of a randomized trial of the Groupe Ouest-Est Leucemies Aigues Myeloblastiques. J Clin Oncol 2000;18:780–787.CrossRefGoogle ScholarPubMed
Heil, G, Hoelzer, D, Sanz, MA, et al. A randomized, double-blind, placebo-controlled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood 1997;90:4710–4718.Google ScholarPubMed
Sung, L, Nathan, PC, Lange, B, Beyene, J, Buchanan, GR. Prophylactic granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor decrease febrile neutropenia after chemotherapy in children with cancer: a meta-analysis of randomized controlled trials. J Clin Oncol 2004;22:3350–3356.CrossRefGoogle ScholarPubMed
Relling, MV, Boyett, JM, Blanco, JG, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 2003;101:3862–3867.CrossRefGoogle ScholarPubMed
Liang, DC. The role of colony-stimulating factors and granulocyte transfusion in treatment options for neutropenia in children with cancer. Paediatr Drugs 2003;5:673–684.CrossRefGoogle ScholarPubMed
Ozkaynak, MF, Krailo, M, Chen, Z, Feusner, J. Randomized comparison of antibiotics with and without granulocyte colony-stimulating factor in children with chemotherapy-induced febrile neutropenia: a report from the Children's Oncology Group. Pediatr Blood Cancer 2005;45:274–280.CrossRefGoogle ScholarPubMed
Safdar, A, Rodriguez, G, Ohmagari, N, et al. The safety of interferon-gamma-1b therapy for invasive fungal infections after hematopoietic stem cell transplantation. Cancer 2005;103:731–739.CrossRefGoogle ScholarPubMed
Grigull, L, Schrauder, A, Schmitt-Thomssen, A, Sykora, K, Welte, K. Efficacy and safety of G-CSF mobilized granulocyte transfusions in four neutropenic children with sepsis and invasive fungal infection. Infection 2002;30:267–271.CrossRefGoogle ScholarPubMed
Price, TH.Granulocyte transfusion in the G-CSF era. Int J Hematol 2002;76(Suppl 2):77–80.CrossRefGoogle ScholarPubMed
Alberti, C, Bouakline, A, Ribaud, P, et al. Relationship between environmental fungal contamination and the incidence of invasive aspergillosis in haematology patients. J Hosp Infect 2001;48: 198–206.CrossRefGoogle ScholarPubMed
Pini, G, Faggi, E, Donato, R, Sacco, C, Fanci, R. Invasive pulmonary aspergillosis in neutropenic patients and the influence of hospital renovation. Mycoses 2008;51:117–122.CrossRefGoogle ScholarPubMed
Cornet, M, Levy, V, Fleury, L, et al. Efficacy of prevention by high-efficiency particulate air filtration or laminar airflow against Aspergillus airborne contamination during hospital renovation. Infect Control Hosp Epidemiol 1999;20:508–513.CrossRefGoogle ScholarPubMed
Hahn, T, Cummings, KM, Michalek, AM, et al. Efficacy of high-efficiency particulate air filtration in preventing aspergillosis in immunocompromised patients with hematologic malignancies. Infect Control Hosp Epidemiol 2002;23:525–531.CrossRefGoogle ScholarPubMed
Oren, I, Haddad, N, Finkelstein, R, Rowe, JM. Invasive pulmonary aspergillosis in neutropenic patients during hospital construction: before and after chemoprophylaxis and institution of HEPA filters. Am J Hematol 2001;66:257–262.CrossRefGoogle ScholarPubMed
Humphreys, H.Positive-pressure isolation and the prevention of invasive aspergillosis. What is the evidence? J Hosp Infect 2004;56:93–100; quiz 63.CrossRefGoogle ScholarPubMed
Moody, K, Charlson, ME, Finlay, J. The neutropenic diet: what's the evidence?J Pediatr Hematol Oncol 2002;24:717–721.CrossRefGoogle ScholarPubMed
Smith, LH, Besser, SG. Dietary restrictions for patients with neutropenia: a survey of institutional practices. Oncol Nurs Forum 2000;27:515–520.Google ScholarPubMed
Wilson, BJ.Dietary recommendations for neutropenic patients. Semin Oncol Nurs 2002;18:44–49.CrossRefGoogle ScholarPubMed
Restau, J, Clark, AP. The neutropenic diet: does the evidence support this intervention?Clin Nurse Spec 2008;22:208–211.CrossRefGoogle ScholarPubMed
Moody, K, Finlay, J, Mancuso, C, Charlson, M. Feasibility and safety of a pilot randomized trial of infection rate: neutropenic diet versus standard food safety guidelines. J Pediatr Hematol Oncol 2006;28:126–133.CrossRefGoogle ScholarPubMed
Gardner, A, Mattiuzzi, G, Faderl, S, et al. Randomized comparison of cooked and noncooked diets in patients undergoing remission induction therapy for acute myeloid leukemia. J Clin Oncol 2008;26:5684–5688.CrossRefGoogle ScholarPubMed
Hughes, WT, Rivera, GK, Schell, MJ, Thornton, D, Lott, L. Successful intermittent chemoprophylaxis for Pneumocystis carinii pneumonitis. N Engl J Med 1987;316: 1627–1632.CrossRefGoogle ScholarPubMed
Hughes, WT, Smith, BL. Intermittent chemoprophylaxis for Pneumocystis carinii pneumonia. Antimicrob Agents Chemother 1983;24:300–301.CrossRefGoogle ScholarPubMed
Hughes, WT, Kuhn, S, Chaudhary, S, et al. Successful chemoprophylaxis for Pneumocystis carinii pneumonitis. N Engl J Med 1977;297:1419–1426.CrossRefGoogle ScholarPubMed
Chan, C, Montaner, J, Lefebvre, EA, et al. Atovaquone suspension compared with aerosolized pentamidine for prevention of Pneumocystis carinii pneumonia in human immunodeficiency virus-infected subjects intolerant of trimethoprim or sulfonamides. J Infect Dis 1999;180:369–376.CrossRefGoogle ScholarPubMed
Hughes, W, Leoung, G, Kramer, F, et al. Comparison of atovaquone (566C80) with trimethoprim-sulfamethoxazole to treat Pneumocystis carinii pneumonia in patients with AIDS. N Engl J Med 1993;328:1521–1527.Google ScholarPubMed
Cruciani, M, Bertazzoni, Minelli E, Mirandola, M, et al. Twice-weekly dapsone for primary prophylaxis against Pneumocystis carinii pneumonia in HIV-1 infection: efficacy, safety and pharmacokinetic data. Clin Microbiol Infect 1996;2:30–35.CrossRefGoogle ScholarPubMed
Bucaneve, G, Micozzi, A, Menichetti, F, et al. Levofloxacin to prevent bacterial infection in patients with cancer and neutropenia. N Engl J Med 2005;353:977–987.CrossRefGoogle ScholarPubMed
Cullen, M, Steven, N, Billingham, L, et al. Antibacterial prophylaxis after chemotherapy for solid tumors and lymphomas. N Engl J Med 2005;353:988–998.CrossRefGoogle ScholarPubMed
Bow, EJ, Mandell, LA, Louie, TJ, et al. Quinolone-based antibacterial chemoprophylaxis in neutropenic patients: effect of augmented Gram-positive activity on infectious morbidity. National Cancer Institute of Canada Clinical Trials Group. Ann Intern Med 1996;125: 183–190.CrossRefGoogle ScholarPubMed
Cruciani, M, Rampazzo, R, Malena, M, et al. Prophylaxis with fluoroquinolones for bacterial infections in neutropenic patients: a meta-analysis. Clin Infect Dis 1996;23:795–805.CrossRefGoogle ScholarPubMed
Kurt, B, Flynn, P, Shenep, JL, et al. Prophylactic antibiotics reduce morbidity due to septicemia during intensive treatment for pediatric acute myeloid leukemia. Cancer 2008;113:376–382.CrossRefGoogle ScholarPubMed
Hammond, SP, Baden, LR. Antibiotic prophylaxis for patients with acute leukemia. Leuk Lymphoma 2008;49:183–193.CrossRefGoogle ScholarPubMed
Shenep, JL.Viridans-group streptococcal infections in immunocompromised hosts. Int J Antimicrob Agents 2000;14:129–135.CrossRefGoogle ScholarPubMed
Reilly, AF, Lange, BJ. Infections with viridans group streptococci in children with cancer. Pediatr Blood Cancer 2007;49:774–780.CrossRefGoogle ScholarPubMed
Spanik, S, Trupl, J, Kunova, A, et al. Viridans streptococcal bacteraemia due to penicillin-resistant and penicillin-sensitive streptococci: analysis of risk factors and outcome in 60 patients from a single cancer centre before and after penicillin is used for prophylaxis. Scand J Infect Dis 1997;29:245–249.CrossRefGoogle ScholarPubMed
Rossetti, F, Cesaro, S, Putti, MC, Zanesco, L. High-dose cytosine arabinoside and viridans streptococcus sepsis in children with leukemia. Pediatr Hematol Oncol 1995;12:387–392.Google ScholarPubMed
Weisman, SJ, Scoopo, FJ, Johnson, GM, Altman, AJ, Quinn, JJ. Septicemia in pediatric oncology patients: the significance of viridans streptococcal infections. J Clin Oncol 1990;8:453–459.CrossRefGoogle ScholarPubMed
Tunkel, AR, Sepkowitz, KA. Infections caused by viridans streptococci in patients with neutropenia. Clin Infect Dis 2002;34:1524–1529.CrossRefGoogle ScholarPubMed
Cornely, OA, Ullmann, AJ, Karthaus, M. Evidence-based assessment of primary antifungal prophylaxis in patients with hematologic malignancies. Blood 2003;101:3365–3372.CrossRefGoogle ScholarPubMed
Bow, EJ, Laverdiere, M, Lussier, N, et al. Antifungal prophylaxis for severely neutropenic chemotherapy recipients: a meta analysis of randomized-controlled clinical trials. Cancer 2002;94:3230–3246.CrossRefGoogle ScholarPubMed
Mattiuzzi, GN, Cortes, J, Alvarado, G, et al. Efficacy and safety of intravenous voriconazole and intravenous itraconazole for antifungal prophylaxis in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome. Support Care Cancer 2009;19:19–26.CrossRefGoogle ScholarPubMed
Siwek, GT, Pfaller, MA, Polgreen, PM, et al. Incidence of invasive aspergillosis among allogeneic hematopoietic stem cell transplant patients receiving voriconazole prophylaxis. Diagn Microbiol Infect Dis 2006;55:209–212.CrossRefGoogle ScholarPubMed
Sipsas, NV, Kontoyiannis, DP. Clinical issues regarding relapsing aspergillosis and the efficacy of secondary antifungal prophylaxis in patients with hematological malignancies. Clin Infect Dis 2006;42:1584–1591.CrossRefGoogle ScholarPubMed
Ullmann, AJ, Lipton, JH, Vesole, DH, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med 2007;356:335–347.CrossRefGoogle ScholarPubMed
Cornely, OA, Maertens, J, Winston, DJ, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med 2007;356:348–359.CrossRefGoogle ScholarPubMed
Kroger, AT, Atkinson, WL, Marcuse, EK, Pickering, LK. General recommendations on immunization: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 2006;55:1–48.Google Scholar
Recommended Immunization schedules for persons aged 0 through 18 years: United States, 2010. MMWR Morb Mortal Wkly Rep 2010;58:1–4.Google Scholar
Brodtman, DH, Rosenthal, DW, Redner, A, Lanzkowsky, P, Bonagura, VR. Immunodeficiency in children with acute lymphoblastic leukemia after completion of modern aggressive chemotherapeutic regimens. J Pediatr 2005;146:654–661.CrossRefGoogle ScholarPubMed
Calaminus, G, Hense, B, Laws, HJ, et al. Diphtheria (D) and tetanus (T) antibody values in children with acute lymphoblastic leukaemia (ALL) after treatment according to Co-ALL 05/92. Klin Padiatr 2007;219: 355–360.CrossRefGoogle Scholar
Ek, T, Mellander, L, Hahn-Zoric, M, Abrahamsson, J. Intensive treatment for childhood acute lymphoblastic leukemia reduces immune responses to diphtheria, tetanus, and Haemophilus influenzae type b. J Pediatr Hematol Oncol 2004;26:727–734.CrossRefGoogle ScholarPubMed
Ek, T, Mellander, L, Andersson, B, Abrahamsson, J. Immune reconstitution after childhood acute lymphoblastic leukemia is most severely affected in the high risk group. Pediatr Blood Cancer 2005;44:461–468.CrossRefGoogle ScholarPubMed
Kosmidis, S, Baka, M, Bouhoutsou, D, et al. Longitudinal assessment of immunological status and rate of immune recovery following treatment in children with ALL. Pediatr Blood Cancer 2008;50:528–532.CrossRefGoogle Scholar
Patel, SR, Ortin, M, Cohen, BJ, et al. Revaccination of children after completion of standard chemotherapy for acute leukemia. Clin Infect Dis 2007;44:635–642.CrossRefGoogle ScholarPubMed
van Tilburg, CM, Sanders, EA, Rovers, MM, Wolfs, TF, Bierings, MB. Loss of antibodies and response to (re-)vaccination in children after treatment for acute lymphocytic leukemia: a systematic review. Leukemia 2006;20:1717–1722.CrossRefGoogle ScholarPubMed
Zengin, E, Sarper, N. Humoral immunity to diphtheria, tetanus, measles, and Hemophilus influenzae type b in children with acute lymphoblastic leukemia and response to re-vaccination. Pediatr Blood Cancer 2009;53:967–972.CrossRefGoogle ScholarPubMed
Ercan, TE, Soycan, LY, Apak, H, et al. Antibody titers and immune response to diphtheria-tetanus-pertussis and measles-mumps-rubella vaccination in children treated for acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2005;27:273–277.CrossRefGoogle ScholarPubMed
Baytan, B, Gunes, AM, Gunay, U. Efficacy of primary hepatitis B immunization in children with acute lymphoblastic leukemia. Indian Pediatr 2008;45:265–270.Google ScholarPubMed
Yetgin, S, Tavil, B, Aytac, S, Kuskonmaz, B, Kanra, G. Unexpected protection from infection by two booster hepatitis B virus vaccination in children with acute lymphoblastic leukemia. Leuk Res 2007;31:493–496.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×