Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T09:38:13.466Z Has data issue: false hasContentIssue false

31 - Therapy-related leukemias

from Section 4 - Complications and supportive care

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Childhood Leukemias , pp. 723 - 771
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smith, MA, Rubinstein, L, Anderson, JR, et al. Secondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxins. J Clin Oncol 1999;17:569–577.CrossRefGoogle ScholarPubMed
Miser, J, Krailo, M, Smith, M, et al. Secondary leukemia (SL) or myelodysplastic syndrome (MDS) following therapy for Ewing's sarcoma (ES). Proc ASCO 1997;16:518a.Google Scholar
Bhatia, S, Krailo, MD, Chen, Z, et al. Therapy-related myelodysplasia and acute myeloid leukemia after Ewing sarcoma and primitive neuroectodermal tumor of bone: a report from the Children's Oncology Group. Blood 2007;109:46–51.CrossRefGoogle ScholarPubMed
Rihani, R, Bazzeh, F, Faqih, N, Sultan, I. Secondary hematopoietic malignancies in survivors of childhood cancer: an analysis of 111 cases from the Surveillance, Epidemiology, and End Result-9 registry. Cancer 2010;116:4385–4394.CrossRefGoogle ScholarPubMed
Travis, LB. The epidemiology of second primary cancers. Cancer Epidemiol Biomarkers Prev 2006;15:2020–2026.CrossRefGoogle ScholarPubMed
Leone, G, Pagano, L, Ben-Yehuda, D, Voso, MT. Therapy-related leukemia and myelodysplasia: susceptibility and incidence. Haematologica 2007;92:1389–1398.CrossRefGoogle ScholarPubMed
Boice, JD, Jr., Travis, LB, Curtis, LB. Patterns of second cancers. Proc AACR. 1997;38:645.Google Scholar
Smith, MA, Seibel, NL, Altekruse, SF, et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 2010;28:2625–2634.CrossRefGoogle ScholarPubMed
Tucker, MA, Meadows, AT, Boice, JD, Jr., et al. Leukemia after therapy with alkylating agents for childhood cancer. J Natl Cancer Inst 1987;78:459–464.CrossRefGoogle ScholarPubMed
Pui, CH, Behm, FG, Raimondi, SC, et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med 1989;321:136–142.CrossRefGoogle ScholarPubMed
Sandoval, C, Pui, CH, Bowman, LC, et al. Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J Clin Oncol 1993;11:1039–1045.CrossRefGoogle ScholarPubMed
Hijiya, N, Ness, KK, Ribeiro, RC, Hudson, MM. Acute leukemia as a secondary malignancy in children and adolescents: current findings and issues. Cancer 2009;115:23–35.CrossRefGoogle ScholarPubMed
Jenkinson, HC, Hawkins, MM, Stiller, CA, et al. Long-term population-based risks of second malignant neoplasms after childhood cancer in Britain. Br J Cancer 2004;91:1905–1910.CrossRefGoogle ScholarPubMed
Smith, SM, Le Beau, MM, Huo, D, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 2003;102:43–52.CrossRefGoogle ScholarPubMed
Meadows, AT, Baum, E, Fossati- Bellani, F, et al. Second malignant neoplasms in children: an update from the Late Effects Study Group. J Clin Oncol 1985;3:532–538.CrossRefGoogle ScholarPubMed
Meadows, AT. Risk factors for second malignant neoplasms: report from the Late Effects Study Group. Bull Cancer 1988;75:125–130.Google ScholarPubMed
Breslow, NE, Lange, JM, Friedman, DL, et al. Secondary malignant neoplasms after Wilms' tumor: an international collaborative study. Int J Cancer 2010;127:657–666.CrossRefGoogle ScholarPubMed
Hijiya, N, Hudson, MM, Lensing, S, et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. JAMA 2007;297:1207–1215.CrossRefGoogle ScholarPubMed
Felix, CA, Hosler, MR, Provisor, D, et al. The p53 gene in pediatric therapy-related leukemia and myelodysplasia. Blood 1996;87:4376–4381.Google ScholarPubMed
Felix, CA, Kolaris, CP, Osheroff, N. Topoisomerase II and the etiology of chromosomal translocations. DNA Repair 2006;5:1093–1108.CrossRefGoogle ScholarPubMed
Hartford, C, Yang, W, Cheng, C, et al. Genome scan implicates adhesion biological pathways in secondary leukemia. Leukemia 2007;21:2128–2136.CrossRefGoogle ScholarPubMed
Churpek, JE, Onel, K. Heritability of hematologic malignancies: from pedigrees to genomics. Hematol Oncol Clin North Am 2010;24:939–972.CrossRefGoogle ScholarPubMed
Barnard, DR, Lange, B, Alonzo, TA, et al. Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood 2002;100:427–434.CrossRefGoogle ScholarPubMed
Nottage, K, Lanctot, J, Li, Z, et al. Long-term risk for subsequent leukemia after treatment for childhood cancer: a report from the Childhood Cancer Survivor Study. Blood 2011;117:6315–6318.CrossRefGoogle ScholarPubMed
Ng, AK, Kenney, LB, Gilbert, ES, Travis, LB. Secondary malignancies across the age spectrum. Semin Radiat Oncol 2010;20:67–78.CrossRefGoogle ScholarPubMed
Kyle, RA, Pierre, RV, Bayrd, ED. Multiple myeloma and acute myelomonocytic leukemia: report of four cases possibly related to melphalan. N Engl J Med 1970;283:1121–1125.CrossRefGoogle Scholar
Davies, SM. Therapy-related leukemia associated with alkylating agents. Med Pediatr Oncol 2001;36:536–540.CrossRefGoogle ScholarPubMed
Travis, LB, Rabkin, CS, Brown, LM, et al. Cancer survivorship: genetic susceptibility and second primary cancers – research strategies and recommendations. J Natl Cancer Inst 2006;98:15–25.CrossRefGoogle ScholarPubMed
Tew, KD, Colvin, M, Chabner, BA. Alkylating agents. In Chabner, BA, Longo, DL (eds.) Cancer Chemotherapy and Biotherapy: Principles and Practice, Vol. 1. New York: Lippincott-Raven, 1996:297–332.Google Scholar
Friedman, HS, Averbuch, SD, Kurtzberg, J. Nonclassic alkylating agents. In Chabner, BA, Longo, DL (eds.) Cancer Chemotherapy and Biotherapy: Principles and Practice, Vol. 1. New York: Lippincott-Raven, 1996:333–356.Google Scholar
Reed, E, Dabholkar, M, Chabner, BA. Platinum analogues. In Chabner, BA, Longo, DL (eds.) Cancer Chemotherapy and Biotherapy: Principles and Practice, Vol. 1. New York: Lippincott-Raven, 1996:357–378.Google Scholar
Chabner, BA, Myers, CE. Clinical pharmacology of cancer chemotherapy. In DeVita, VT, Hellman, S, Rosenberg, SA (eds.) Principles and Practice of Oncology, 3rd edn. Philadelphia, PA: Lippincott, 1989:349–395.Google Scholar
Greene, MH. Is cisplatin a human carcinogen?J Natl Cancer Inst 1992;84:306–312.CrossRefGoogle ScholarPubMed
Greene, MH, Harris, EL, Gershenson, DM, et al. Melphalan may be a more potent leukemogen than cyclophosphamide. Ann Intern Med 1986;105:360–367.CrossRefGoogle ScholarPubMed
Meadows, AT, Obringer, AC, Marrero, O, et al. Second malignant neoplasms following childhood Hodgkin's disease: treatment and splenectomy as risk factors. Med Pediatr Oncol 1989;17:477–484.CrossRefGoogle ScholarPubMed
Schellong, G, Riepenhausen, M, Creutzig, U, et al. Low risk of secondary leukemias after chemotherapy without mechlorethamine in childhood Hodgkin's disease. German–Austrian Pediatric Hodgkin's Disease Group. J Clin Oncol 1997;15:2247–2253.CrossRefGoogle ScholarPubMed
Curtis, RE, Boice, JD, Jr., Stovall M, et al. Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N Engl J Med 1992;326:1745–1751.CrossRefGoogle ScholarPubMed
Blayney, DW, Longo, DL, Young, RC, et al. Decreasing risk of leukemia with prolonged follow-up after chemotherapy and radiotherapy for Hodgkin's disease. N Engl J Med 1987;316:710–714.CrossRefGoogle ScholarPubMed
Pedersen-Bjergaard, J. Incidence, previous treatment and chromosome characteristics of secondary acute non-lymphocytic leukemia. Cancer Treat Rev 1985;12:65–75.CrossRefGoogle ScholarPubMed
Diamandidou, E, Buzdar, AU, Smith, TL, et al. Treatment-related leukemia in breast cancer patients treated with fluorouracil-doxorubicin-cyclophosphamide combination adjuvant chemotherapy: the University of Texas M.D. Anderson Cancer Center experience. J Clin Oncol 1996;14:2722–2730.CrossRefGoogle Scholar
Panizo, C, Patino, A, Calasanz, MJ, et al. Emergence of secondary acute leukemia in a patient treated for osteosarcoma: implications of germline TP53 mutations. Med Pediatr Oncol 1998;30:165–169.3.0.CO;2-F>CrossRefGoogle Scholar
Pappo, A, Schneider, NR, Sanders, JM, Buchanan, GR. Secondary myelodysplastic syndrome complicating therapy for osteogenic sarcoma. Cancer 1991;68:1373–1375.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
Williams, TM, Colas, C, Nowell, PC, et al. Association of germline p53 replication error with myelodysplastic syndrome following osteosarcoma treatment. Proc AACR 1999;40:683.Google Scholar
Kaldor, JM, Day, NE, Clarke, EA, et al. Leukemia following Hodgkin's disease. N Engl J Med 1990;322:7–13.CrossRefGoogle ScholarPubMed
Pui, CH, Hancock, ML, Raimondi, SC, et al. Myeloid neoplasia in children treated for solid tumours. Lancet 1990;336:417–421.CrossRefGoogle ScholarPubMed
Pui, CH, Ribeiro, RC, Hancock, ML, et al. Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 1991;325:1682–1687.CrossRefGoogle ScholarPubMed
Winick, NJ, McKenna, RW, Shuster, JJ, et al. Secondary acute myeloid leukemia in children with acute lymphoblastic leukemia treated with etoposide. J Clin Oncol 1993;11:209–217.CrossRefGoogle ScholarPubMed
Chak, LY, Sikic, BI, Tucker, MA, Horns, RC, Jr., Cox, RS. Increased incidence of acute nonlymphocytic leukemia following therapy in patients with small cell carcinoma of the lung. J Clin Oncol 1984;2:385–390.CrossRefGoogle ScholarPubMed
Johnson, DH, Porter, LL, List, AF, et al. Acute nonlymphocytic leukemia after treatment of small cell lung cancer. Am J Med 1986;81:962–968.CrossRefGoogle ScholarPubMed
Weh, HJ, Kabisch, H, Landbeck, G, Hossfeld, DK. Translocation (9;11)(p21;q23) in a child with acute monoblastic leukemia following 2½ years after successful chemotherapy for neuroblastoma. J Clin Oncol 1986;4:1518–1520.CrossRefGoogle Scholar
Verdeguer, A, Ruiz, JG, Ferris, J, et al. Acute nonlymphoblastic leukemia in children treated for acute lymphoblastic leukemia with an intensive regimen including teniposide. Med Pediatr Oncol 1992;20:48–52.CrossRefGoogle ScholarPubMed
Heyn, R, Khan, F, Ensign, LG, et al. Acute myeloid leukemia in patients treated for rhabdomyosarcoma with cyclophosphamide and low-dose etoposide on Intergroup Rhabdomyosarcoma Study III: an interim report. Med Pediatr Oncol 1994;23:99–106.CrossRefGoogle ScholarPubMed
Bajorin, DF, Motzer, RJ, Rodriguez, E, Murphy, B, Bosl, GJ. Acute nonlymphocytic leukemia in germ cell tumor patients treated with etoposide-containing chemotherapy. J Natl Cancer Inst 1993;85:60–62.CrossRefGoogle ScholarPubMed
DeVore, R, Whitlock, J, Hainsworth, JD, Johnson, DH. Therapy-related acute nonlymphocytic leukemia with monocytic features and rearrangement of chromosome 11q. Ann Intern Med 1989;110:740–742.CrossRefGoogle ScholarPubMed
Whitlock, JA, Greer, JP, Lukens, JN. Epipodophyllotoxin-related leukemia. Identification of a new subset of secondary leukemia. Cancer 1991;68:600–604.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Zeimet, AG, Thaler, J, Abfalter, E, Marth, C, Dapunt, O. Secondary leukaemias after etoposide. Lancet 1992;340:379–380.CrossRefGoogle ScholarPubMed
Hawkins, MM, Wilson, LM, Stovall, MA, et al. Epipodophyllotoxins, alkylating agents, and radiation and risk of secondary leukaemia after childhood cancer. BMJ 1992;304:951–958.CrossRefGoogle ScholarPubMed
Pedersen-Bjergaard, J, Philip, P. Balanced translocations involving chromosome bands 11q23 and 21q22 are highly characteristic of myelodysplasia and leukemia following therapy with cytostatic agents targeting at DNA-topoisomerase II. Blood 1991;78:1147–1148.Google ScholarPubMed
Pedersen-Bjergaard, J, Philip, P. Two different classes of therapy-related and de-novo acute myeloid leukemia? Cancer Genet Cytogenet 1991;55:119–124.CrossRefGoogle ScholarPubMed
Bokemeyer, C, Schmoll, HJ. Secondary neoplasms following treatment of malignant germ cell tumors. J Clin Oncol 1993;11:1703–1709.CrossRefGoogle ScholarPubMed
Secker-Walker, LM, Stewart, EL, Todd, A. Acute lymphoblastic leukaemia with t(4;11) follows neuroblastoma: a late effect of treatment?Med Pediatr Oncol 1985;13:48–50.CrossRefGoogle Scholar
Ratain, MJ, Kaminer, LS, Bitran, JD, et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood 1987;70:1412–1417.Google ScholarPubMed
Fortune, JM, Osheroff, N. Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 2000;64:221–253.CrossRefGoogle ScholarPubMed
Capranico, G, Binaschi, M. DNA sequence selectivity of topoisomerases and topoisomerase poisons. Biochim Biophys Acta 1998;1400: 185–194.CrossRefGoogle ScholarPubMed
Megonigal, MD, Rappaport, EF, Jones, DH, et al. Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias. Proc Natl Acad Sci USA 1997;94:11583–11588.CrossRefGoogle ScholarPubMed
Megonigal, MD, Cheung, NK, Rappaport, EF, et al. Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. Proc Natl Acad Sci USA 2000;97:2814–2819.CrossRefGoogle ScholarPubMed
Hasan, SK, Mays, AN, Ottone, T, et al. Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood 2008;112:3383–3390.CrossRefGoogle Scholar
Kornek, B, Bernert, G, Rostasy, K, et al. Long-term follow-up of pediatric patients treated with mitoxantrone for multiple sclerosis. Neuropediatrics 2011;42:7–12.CrossRefGoogle ScholarPubMed
Beaumont, M, Sanz, M, Carli, PM, et al. Therapy-related acute promyelocytic leukemia. J Clin Oncol 2003;21:2123–2137.CrossRefGoogle ScholarPubMed
Crump, M, Tu, D, Shepherd, L, et al. Risk of acute leukemia following epirubicin-based adjuvant chemotherapy: a report from the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2003;21:3066–3071.CrossRefGoogle ScholarPubMed
Mays, AN, Osheroff, N, Xiao, Y, et al. Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood 2010;115:326–330.CrossRefGoogle Scholar
Le Deley, MC, Suzan, F, Cutuli, B, et al. Anthracyclines, mitoxantrone, radiotherapy, and granulocyte colony-stimulating factor: risk factors for leukemia and myelodysplastic syndrome after breast cancer. J Clin Oncol 2007;25:292–300.CrossRefGoogle ScholarPubMed
Sugita, K, Furukawa, T, Tsuchida, M, et al. High frequency of etoposide (VP-16)-related secondary leukemia in children with non-Hodgkin's lymphoma [see comments]. Am J Pediatr Hematol Oncol 1993;15:99–104.CrossRefGoogle Scholar
Le Deley, MC, Leblanc, T, Shamsaldin, A, et al. Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case–control study by the Societe Francaise d'Oncologie Pediatrique. J Clin Oncol 2003;21:1074–1081.CrossRefGoogle ScholarPubMed
Pui, CH, Relling, MV, Behm, FG, et al. l-Asparaginase may potentiate the leukemogenic effect of the epipodophyllotoxins. Leukemia 1995;9:1680–1684.Google ScholarPubMed
Rivera, GK, Pui, CH, Crist, WM. The epipodophyllotoxins: both sides of the coin. J Clin Oncol 1993;11:1624–1625.CrossRefGoogle ScholarPubMed
Jeha, S, Jaffe, N, Robertson, R. Secondary acute non-lymphoblastic leukemia in two children following treatment with a cis-diamminedichloroplatinum-II-based regimen for osteosarcoma. Med Pediatr Oncol 1992;20:71–74.CrossRefGoogle ScholarPubMed
Pedersen-Bjergaard, J, Daugaard, G, Hansen, SW, et al. Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet 1991;338:359–363.CrossRefGoogle ScholarPubMed
Relling, MV, Boyett, JM, Blanco, JG, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 2003;101:3862–3867.CrossRefGoogle ScholarPubMed
Tigue, CC, McKoy, JM, Evens, AM, et al. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant 2007;40:185–192.CrossRefGoogle ScholarPubMed
Kushner, BH, Kramer, K, Modak, S, et al. Reduced risk of secondary leukemia with fewer cycles of dose-intensive induction chemotherapy in patients with neuroblastoma. Pediatr Blood Cancer 2009;53:17–22.CrossRefGoogle ScholarPubMed
Robinson, BW, Cheung, NK, Kolaris, CP, et al. Prospective tracing of MLL-FRYL clone with low MEIS1 expression from emergence during neuroblastoma treatment to diagnosis of myelodysplastic syndrome. Blood 2008;111:3802–3812.CrossRefGoogle ScholarPubMed
Tebbi, CK, London, WB, Friedman, D, et al. Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin's disease. J Clin Oncol 2007;25:493–500.CrossRefGoogle ScholarPubMed
Barry, EV, Vrooman, LM, Dahlberg, SE, et al. Absence of secondary malignant neoplasms in children with high-risk acute lymphoblastic leukemia treated with dexrazoxane. J Clin Oncol 2008;26:1106–1111.CrossRefGoogle ScholarPubMed
Vrooman, LM, Neuberg, DS, Stevenson, KE, et al. The low incidence of secondary acute myelogenous leukaemia in children and adolescents treated with dexrazoxane for acute lymphoblastic leukaemia: a report from the Dana-Farber Cancer Institute ALL Consortium. Eur J Cancer 2011;47:1373–1379.CrossRefGoogle ScholarPubMed
Felix, CA. A safer regimen for high-risk neuroblastoma. Pediatr Blood Cancer 2009;53:3–6.CrossRefGoogle ScholarPubMed
Baker, DL, Schmidt, ML, Cohn, SL, et al. Outcome after reduced chemotherapy for intermediate-risk neuroblastoma. N Engl J Med 2010;363:1313–1323.CrossRefGoogle ScholarPubMed
Allard, A, Haddy, N, Le, Deley MC, et al. Role of radiation dose in the risk of secondary leukemia after a solid tumor in childhood treated between 1980 and 1999. Int J Radiat Oncol Biol Phys 2010;78:1474–1482.CrossRefGoogle ScholarPubMed
Pinkel, D. Selecting treatment for children with acute lymphoblastic leukemia. J Clin Oncol 1996;14:4–6.CrossRefGoogle ScholarPubMed
Schonfeld, SJ, Gilbert, ES, Dores, GM, et al. Acute myeloid leukemia following Hodgkin lymphoma: a population-based study of 35 511 patients. J Natl Cancer Inst 2006;98:215–218.CrossRefGoogle ScholarPubMed
Cimino, G, Papa, G, Tura, S, et al. Second primary cancer following Hodgkin's disease: updated results of an Italian multicentric study. J Clin Oncol 1991;9:432–437.CrossRefGoogle ScholarPubMed
Rivera, GK, Pui, CH, Santana, VM, Pratt, CB, Crist, WM. Epipodophyllotoxins in the treatment of childhood cancer. Cancer Chemother Pharmacol 1994;34(Suppl):S89–S95.CrossRefGoogle ScholarPubMed
Giaccone, G. Teniposide alone and in combination chemotherapy in small cell lung cancer. Semin Oncol 1992;19:75–80.Google ScholarPubMed
Giaccone, G, Splinter, TA, Kirkpatrick, A, et al. The European Organization for Research and Treatment of Cancer experience with teniposide: preliminary results of a randomized study in non-small cell lung cancer. Semin Oncol 1992;19:98–102.Google ScholarPubMed
Stine, KC, Saylors, RL, Sawyer, JR, Becton, DL. Secondary acute myelogenous leukemia following safe exposure to etoposide. J Clin Oncol 1997;15:1583–1586.CrossRefGoogle ScholarPubMed
Sandler, ES, Friedman, DJ, Mustafa, MM, et al. Treatment of children with epipodophyllotoxin-induced secondary acute myeloid leukemia. Cancer 1997;79:1049–1054.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Pui, CH, Pei, D, Sandlund, JT, et al. Long-term results of St. Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010;24:371–382.CrossRefGoogle ScholarPubMed
Pal, SK, Childs, BH, Pegram, M. Emergence of nonanthracycline regimens in the adjuvant treatment of breast cancer. Breast Cancer Res Treat 2010;119:25–32.CrossRefGoogle ScholarPubMed
Davidson, A, Gelmon, K. Do anthracyclines still have a role in adjuvant chemotherapy of breast cancer? Future Oncol 2011;7:37–55.CrossRefGoogle ScholarPubMed
de Boer, RH, Chan, A, Tran, B, Wilcken, N. Use of non-anthracycline regimens in early stage breast cancer in Australia. Asia Pac J Clin Oncol 2011;7:4–10.CrossRefGoogle ScholarPubMed
Bhatia, S, Robison, LL, Francisco, L, et al. Late mortality in survivors of autologous hematopoietic-cell transplantation: report from the Bone Marrow Transplant Survivor Study. Blood 2005;105:4215–4222.CrossRefGoogle ScholarPubMed
Krishnan, A, Bhatia, S, Slovak, ML, et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors. Blood 2000;95:1588–1593.Google ScholarPubMed
Miller, JS, Arthur, DC, Litz, CE, et al. Myelodysplastic syndrome after autologous bone marrow transplantation: an additional late complication of curative cancer therapy. Blood 1994;83:3780–3786.Google ScholarPubMed
Bhatia, S, Ramsay, NK, Steinbuch, M, et al. Malignant neoplasms following bone marrow transplantation. Blood 1996;87:3633–3639.Google ScholarPubMed
Deeg, HJ, Socie, G. Malignancies after hematopoietic stem cell transplantation: many questions, some answers. Blood 1998;91:1833–1844.Google ScholarPubMed
Pedersen-Bjergaard, J, Andersen, MK, Christiansen, DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood 2000;95:3273–3279.Google ScholarPubMed
Mahindra, A, Bolwell, BJ, Rybicki, L, et al. Etoposide plus G-CSF priming compared with G-CSF alone in patients with lymphoma improves mobilization without an increased risk of secondary myelodysplasia and leukemia. Bone Marrow Transplant 2012;47: 231--235.CrossRefGoogle ScholarPubMed
Tarella, C, Passera, R, Magni, M, et al. Risk factors for the development of secondary malignancy after high-dose chemotherapy and autograft, with or without rituximab: a 20-year retrospective follow-up study in patients with lymphoma. J Clin Oncol 2011;29:814–824.CrossRefGoogle ScholarPubMed
Stone, RM, Neuberg, D, Soiffer, R, et al. Myelodysplastic syndrome as a late complication following autologous bone marrow transplantation for non-Hodgkin's lymphoma. J Clin Oncol 1994;12:2535–2542.CrossRefGoogle ScholarPubMed
Rege, KP, Janes, SL, Saso, R, et al. Secondary leukaemia characterised by monosomy 7 occurring post-autologous stem cell transplantation for AML. Bone Marrow Transplant 1998;21:853–855.CrossRefGoogle ScholarPubMed
Micallef, IN, Lillington, DM, Apostolidis, J, et al. Therapy-related myelodysplasia and secondary acute myelogenous leukemia after high-dose therapy with autologous hematopoietic progenitor-cell support for lymphoid malignancies. J Clin Oncol 2000;18:947–955.CrossRefGoogle ScholarPubMed
Armitage, JO. Myelodysplasia and acute leukemia after autologous bone marrow transplantation. J Clin Oncol 2000;18:945–946.CrossRefGoogle ScholarPubMed
Abruzzese, E, Radford, JE, Miller, JS, et al. Detection of abnormal pretransplant clones in progenitor cells of patients who developed myelodysplasia after autologous transplantation. Blood 1999;94:1814–1819.Google ScholarPubMed
Weber, MH, Wenzel, U, Thiel, E, Knauf, WU. Chromosomal aberrations characteristic for sAML/sMDS are not detectable by random screening using FISH in peripheral blood-derived grafts used for autologous transplantation. J Hematother Stem Cell Res 2000;9:861–865.CrossRefGoogle Scholar
Bhatia, R, Van Heijzen, K, Palmer, A, et al. Longitudinal assessment of hematopoietic abnormalities after autologous hematopoietic cell transplantation for lymphoma. J Clin Oncol 2005;23:6699–6711.CrossRefGoogle ScholarPubMed
[No authors listed]Secondary leukaemia: after umbilical cord blood stem cell transplantation too. Prescrire Int 2010;19:166–167.Google Scholar
Winick, N, Buchanan, GR, Kamen, BA. Secondary acute myeloid leukemia in Hispanic children. J Clin Oncol 1993;11:1433.CrossRefGoogle ScholarPubMed
Aguilera, DG, Vaklavas, C, Tsimberidou, AM, et al. Pediatric therapy-related myelodysplastic syndrome/acute myeloid leukemia: the MD Anderson Cancer Center experience. J Pediatr Hematol Oncol 2009;31:803–811.CrossRefGoogle ScholarPubMed
Malkin, D, Li, FP, Strong, LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990;250:1233–1238.CrossRefGoogle Scholar
Felix, CA, Megonigal, MD, Chervinsky, DS, et al. Association of germline p53 mutation with MLL segmental jumping translocation in treatment-related leukemia. Blood 1998;91:4451–4456.Google ScholarPubMed
Diller, L, Sexsmith, E, Gottlieb, A, Li, FP, Malkin, D. Germline p53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest 1995;95:1606–1611.CrossRefGoogle ScholarPubMed
McIntyre, JF, Smith-Sorensen, B, Friend, SH, et al. Germline mutations of the p53 tumor suppressor gene in children with osteosarcoma. J Clin Oncol 1994;12:925–930.CrossRefGoogle ScholarPubMed
Tanaka, K, Arif, M, Eguchi, M, et al. Frequent jumping translocations of chromosomal segments involving the ABL oncogene alone or in combination with CD3-MLL genes in secondary leukemias. Blood 1997;89:596–600.Google ScholarPubMed
Avet-Loiseau, H, Godon, C, Li, JY, et al. Amplification of the 11q23 region in acute myeloid leukemia. Genes Chromosomes Cancer 1999;26:166–170.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Livingstone, LR, White, A, Sprouse, J, et al. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 1992;70:923–935.CrossRefGoogle ScholarPubMed
Paulson, TG, Almasan, A, Brody, LL, Wahl, GM. Gene amplification in a p53-deficient cell line requires cell cycle progression under conditions that generate DNA breakage. Mol Cell Biol 1998;18:3089–3100.CrossRefGoogle Scholar
Kaneko, Y, Maseki, N, Sakurai, M, et al. Chromosome pattern in juvenile chronic myelogenous leukemia, myelodysplastic syndrome, and acute leukemia associated with neurofibromatosis. Leukemia 1989;3:36–41.Google ScholarPubMed
Maris, JM, Wiersma, SR, Mahgoub, N, et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer 1997;79:1438–1446.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Perilongo, G, Felix, CA, Meadows, AT, et al. Sequential development of Wilms' tumor, T-cell acute lymphoblastic leukemia, medulloblastoma and myeloid leukemia in a child with type 1 neurofibromatosis: a clinical and cytogenetic case report. Leukemia 1993;7:912–915.Google Scholar
Side, L, Taylor, B, Cayouette, M, et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 1997;336:1713–1720.CrossRefGoogle ScholarPubMed
Mahgoub, N, Taylor, BR, Le Beau, MM, et al. Myeloid malignancies induced by alkylating agents in Nf1 mice. Blood 1999;93:3617–3623.Google ScholarPubMed
Zebisch, A, Staber, PB, Delavar, A, et al. Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res 2006;66:3401–3408.CrossRefGoogle ScholarPubMed
Bagby, GC, Alter, BP. Fanconi anemia. Semin Hematol 2006;43:147–156.CrossRefGoogle ScholarPubMed
Jawad, M, Seedhouse, CH, Russell, N, Plumb, M. Polymorphisms in human homeobox HLX1 and DNA repair RAD51 genes increase the risk of therapy-related acute myeloid leukemia. Blood 2006;108:3916–3918.CrossRefGoogle ScholarPubMed
Seedhouse, C, Russell, N. Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia. Br J Haematol 2007;137:513–529.CrossRefGoogle ScholarPubMed
Scardocci, A, Guidi, F, D'Alo, F, et al. Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br J Cancer 2006;95:1108–1113.CrossRefGoogle ScholarPubMed
Seedhouse, C, Bainton, R, Lewis, M, et al. The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 2002;100:3761–3766.CrossRefGoogle ScholarPubMed
Allan, JM, Smith, AG, Wheatley, K, et al. Genetic variation in XPD predicts treatment outcome and risk of acute myeloid leukemia following chemotherapy. Blood 2004;104:3872–3877.CrossRefGoogle ScholarPubMed
Smith, AG, Worrillow, LJ, Allan, JM. A common genetic variant in XPD associates with risk of 5q- and 7q-deleted acute myeloid leukemia. Blood 2007;109:1233–1236.CrossRefGoogle ScholarPubMed
Ben-Yehuda, D, Krichevsky, S, Caspi, O, et al. Microsatellite instability and p53 mutations in therapy-related leukemia suggest mutator phenotype. Blood 1996;88:4296–4303.Google ScholarPubMed
Worrillow, LJ, Travis, LB, Smith, AG, et al. An intron splice acceptor polymorphism in hMSH2 and risk of leukemia after treatment with chemotherapeutic alkylating agents. Clin Cancer Res 2003;9:3012–3020.Google ScholarPubMed
Echlin-Bell, DR, Smith, LL, Li, L, et al. Polymorphisms in the MLL breakpoint cluster region (BCR). Hum Genet 2003;113:80–91.Google Scholar
Raunio, H, Husgafvel-Pursiainen, K, Anttila, S, et al. Diagnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility: a review. Gene 1995;159:113–121.CrossRefGoogle ScholarPubMed
Smith, G, Stanley, LA, Sim, E, Strange, RC, Wolf, CR. Metabolic polymorphisms and cancer susceptibility. Cancer Surv 1995;25:27–65.Google ScholarPubMed
Morgan, GJ, Smith, MT. Metabolic enzyme polymorphisms and susceptibility to acute leukemia in adults. Am J Pharmacogenom 2002;2:79–92.CrossRefGoogle ScholarPubMed
Hayes, JD, Pulford, DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995;30:445–600.CrossRefGoogle ScholarPubMed
Li, AP, Kaminski, DL, Rasmussen, A. Substrates of human hepatic cytochrome P450 3A4. Toxicology 1995;104:1–8.CrossRefGoogle ScholarPubMed
Wrighton, SA, Stevens, JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992;22:1–21.CrossRefGoogle ScholarPubMed
Felix, CA, Walker, AH, Lange, BJ, et al. Association of CYP3A4 genotype with treatment-related leukemia. Proc Natl Acad Sci USA 1998;95:13176–13181.CrossRefGoogle ScholarPubMed
Kuehl, P, Zhang, J, Lin, Y, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001;27:383–391.CrossRefGoogle ScholarPubMed
Rund, D, Krichevsky, S, Bar-Cohen, S, et al. Therapy-related leukemia: clinical characteristics and analysis of new molecular risk factors in 96 adult patients. Leukemia 2005;19:1919–1928.CrossRefGoogle ScholarPubMed
Blanco, JG, Edick, MJ, Hancock, ML, et al. Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 2002;12:605–611.CrossRefGoogle ScholarPubMed
Kishi, S, Yang, W, Boureau, B, et al. Effects of prednisone and genetic polymorphisms on etoposide disposition in children with acute lymphoblastic leukemia. Blood 2004;103:67–72.CrossRefGoogle ScholarPubMed
Lovett, BD, Strumberg, D, Blair, IA, et al. Etoposide metabolites enhance DNA topoisomerase II cleavage near leukemia-associated MLL translocation breakpoints. Biochemistry 2001;40:1159–1170.CrossRefGoogle ScholarPubMed
Stremetzne, S, Jaehde, U, Schunack, W. Determination of the cytotoxic catechol metabolite of etoposide (3′-O-demethyletoposide) in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1997;703:209–215.CrossRefGoogle Scholar
Relling, MV, Yanishevski, Y, Nemec, J, et al. Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 1998;12:346–352.CrossRefGoogle ScholarPubMed
Pang, S, Zheng, N, Felix, CA, et al. Simultaneous determination of etoposide and its catechol metabolite in the plasma of pediatric patients by liquid chromatography/tandem mass spectrometry. J Mass Spectrom 2001;36:771–781.CrossRefGoogle ScholarPubMed
van de Poll, ME, Relling, MV, Schuetz, EG, et al. The effect of atovaquone on etoposide pharmacokinetics in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 2001;47:467–472.CrossRefGoogle ScholarPubMed
Stremetzne, S, Jaehde, U, Kasper, R, et al. Considerable plasma levels of a cytotoxic etoposide metabolite in patients undergoing high-dose chemotherapy. Eur J Cancer 1997;33:978–979.CrossRefGoogle ScholarPubMed
Zheng, N, Felix, CA, Pang, S, et al. Plasma etoposide catechol increases in pediatric patients undergoing multiple-day chemotherapy with etoposide. Clin Cancer Res 2004;10:2977–2985.CrossRefGoogle ScholarPubMed
Relling, MV, Nemec, J, Schuetz, EG, et al. O-Demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol 1994;45:352–358.Google ScholarPubMed
Zhuo, X, Zheng, N, Felix, CA, Blair, IA. Kinetics and regulation of cytochrome P450-mediated etoposide metabolism. Drug Metab Dispos 2004;32:993–1000.Google ScholarPubMed
Chang, TK, Yu, L, Maurel, P, Waxman, DJ. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 1997;57:1946–1954.Google ScholarPubMed
Roddam, PL, Rollinson, S, Kane, E, et al. Poor metabolizers at the cytochrome P450 2D6 and 2C19 loci are at increased risk of developing adult acute leukaemia. Pharmacogenetics 2000;10:605–615.CrossRefGoogle ScholarPubMed
Chen, H, Sandler, DP, Taylor, JA, et al. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet 1996;347:295–297.CrossRefGoogle ScholarPubMed
Sasai, Y, Horiike, S, Misawa, S, et al. Genotype of glutathione S-transferase and other genetic configurations in myelodysplasia. Leuk Res 1999;23:975–981.CrossRefGoogle ScholarPubMed
Allan, JM, Wild, CP, Rollinson, S, et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad Sci USA 2001;98:11592–11597.CrossRefGoogle ScholarPubMed
Woo, MH, Shuster, J, Chen, C-L, et al. Glutathione S-transferase genotypes in children who develop treatment-related acute myeloid malignancies. Leukemia 2000;14:232–237.CrossRefGoogle ScholarPubMed
Woo, MH, Shuster, JJ, Chen, C-L, et al. Glutathione S-transferase genotypes in children who develop treatment-related acute myeloid malignancies. Leukemia 2000;14:232–237.CrossRefGoogle ScholarPubMed
Ernster, L. DT-diaphorase: Its structure, function, regulation, and role in antioxidant defence and cancer chemotherapy. In Yagi, K (ed.) Pathophysiology of Lipid Peroxides and Related Free Radicals. Basel: Karger, 1998:149–168.Google Scholar
Ross, D. Quinone reductases. In Guengerich, FP (ed.) Comprehensive Toxicology, Vol. 3. New York: Pergamon Press, 1997:179–197.Google Scholar
Joseph, P, Long, DJ, 2nd, Klein-Szanto, AJ, Jaiswal, AK. Role of NAD(P)H:quinone oxidoreductase 1 (DT diaphorase) in protection against quinone toxicity. Biochem Pharmacol 2000;60:207–214.CrossRefGoogle ScholarPubMed
Benson, AM, Hunkeler, MJ, Talalay, P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci USA 1980;77:5216–5220.CrossRefGoogle ScholarPubMed
Traver, RD, Horikoshi, T, Danenberg, KD, et al. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 1992;52:797–802.Google ScholarPubMed
Siegel, D, McGuinness, SM, Winski, SL, Ross, D. Genotype–phenotype relationships in studies of a polymorphism in NAD(P)H:quinone oxidoreductase 1. Pharmacogenetics 1999;9:113–121.CrossRefGoogle ScholarPubMed
Rothman, N, Smith, MT, Hayes, RB, et al. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C→T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res 1997;57:2839–2842.Google ScholarPubMed
Larson, RA, Wang, Y, Banerjee, M, et al. Prevalence of the inactivating 609C→T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemia. Blood 1999;94:803–807.Google ScholarPubMed
Naoe, T, Takeyama, K, Yokozawa, T, et al. Analysis of genetic polymorphism in NQO1, GST-M1, GST-T1, and CYP3A4 in 469 Japanese patients with therapy-related leukemia/myelodysplastic syndrome and de novo acute myeloid leukemia. Clin Cancer Res 2000;6:4091–4095.Google ScholarPubMed
Smith, MT, Wang, Y, Skibola, CF, et al. Low NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children. Blood 2002;100:4590–4593.CrossRefGoogle ScholarPubMed
Wiemels, JL, Smith, RN, Taylor, GM, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA 2001;98:4004–4009.CrossRefGoogle ScholarPubMed
Krajinovic, M, Lamothe, S, Labuda, D, et al. Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 2004;103:252–257.CrossRefGoogle ScholarPubMed
Jazbec, J, Kitanovski, L, Aplenc, R, Debeljak, M, Dolzan, V. No evidence of association of methylenetetrahydrofolate reductase polymorphism with occurrence of second neoplasms after treatment of childhood leukemia. Leuk Lymphoma 2005;46:893–897.CrossRefGoogle ScholarPubMed
Guillem, VM, Collado, M, Terol, MJ, et al. Role of MTHFR (677, 1298) haplotype in the risk of developing secondary leukemia after treatment of breast cancer and hematological malignancies. Leukemia 2007;21:1413–1422.CrossRefGoogle ScholarPubMed
Relling, MV, Hancock, ML, Rivera, GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999;91:2001–2008.CrossRefGoogle ScholarPubMed
Relling, MV, Gardner, EE, Sandborn, WJ, et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin Pharmacol Ther 2011;89:387–391.CrossRefGoogle ScholarPubMed
Bo, J, Schroder, H, Kristinsson, J, et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 1999;86:1080–1086.Google Scholar
Schmiegelow, K, Al-Modhwahi, I, Andersen, MK, et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia: results from the NOPHO ALL-92 study. Blood 2009;113:6077–6084.CrossRefGoogle ScholarPubMed
Stanulla, M, Schaeffeler, E, Moricke, A, et al. Thiopurine methyltransferase genetics is not a major risk factor for secondary malignant neoplasms after treatment of childhood acute lymphoblastic leukemia on Berlin–Frankfurt–Münster protocols. Blood 2009;114:1314–1318.CrossRefGoogle ScholarPubMed
Bolufer, P, Collado, M, Barragan, E, et al. Profile of polymorphisms of drug-metabolising enzymes and the risk of therapy-related leukaemia. Br J Haematol 2007;136:590–596.CrossRefGoogle ScholarPubMed
Dumont, P, Leu, JI, Della Pietra, AC, 3rd, George, DL, Murphy, M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 2003;33:357–365.CrossRefGoogle ScholarPubMed
Murphy, ME. Polymorphic variants in the p53 pathway. Cell Death Differ 2006;13:916–920.CrossRefGoogle ScholarPubMed
Ellis, NA, Huo, D, Yildiz, O, et al. MDM2 SNP309 and TP53 Arg72Pro interact to alter therapy-related acute myeloid leukemia susceptibility. Blood 2008;112:741–749.CrossRefGoogle ScholarPubMed
Bogni, A, Cheng, C, Liu, W, et al. Genome-wide approach to identify risk factors for therapy-related myeloid leukemia. Leukemia 2006;20:239–246.CrossRefGoogle ScholarPubMed
Knight, JA, Skol, AD, Shinde, A, et al. Genome-wide association study to identify novel loci associated with therapy-related myeloid leukemia susceptibility. Blood 2009;113:5575–5582.Google ScholarPubMed
Jones, TS, Yang, W, Evans, WE, Relling, MV. Using HapMap tools in pharmacogenomic discovery: the thiopurine methyltransferase polymorphism. Clin Pharmacol Ther 2007;81:729–734.CrossRefGoogle ScholarPubMed
Pedersen-Bjergaard, J, Andersen, MK, Christiansen, DH, Nerlov, C. Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood 2002;99:1909–1912.CrossRefGoogle ScholarPubMed
Vardiman, JW, Harris, NL, Brunning, RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292–2302.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Baumann, I. Myelodysplastic syndrome in children and adolescents. Semin Hematol 2008;45:60–70.CrossRefGoogle ScholarPubMed
Willman, CL. Molecular genetic features of myelodysplastic syndromes (MDS). Leukemia 1998;12(Suppl 1):S2–S6.Google Scholar
Hasle, H, Alonzo, TA, Auvrignon, A, et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood 2007;109:4641–4647.CrossRefGoogle Scholar
Rubin, CM, Arthur, DC, Woods, WG, et al. Therapy-related myelodysplastic syndrome and acute myeloid leukemia in children: correlation between chromosomal abnormalities and prior therapy. Blood 1991;78:2982–2988.Google ScholarPubMed
Liang, H, Fairman, J, Claxton, DF, et al. Molecular anatomy of chromosome 7q deletions in myeloid neoplasms: evidence for multiple critical loci. Proc Natl Acad Sci USA 1998;95:3781–3785.CrossRefGoogle ScholarPubMed
Bodner, SM, Naeve, CW, Rakestraw, KM, et al. Cloning and chromosomal localization of the gene encoding human cyclin D-binding Myb-like protein (hDMP1). Gene 1999;229:223–228.CrossRefGoogle Scholar
Emerling, BM, Bonifas, J, Kratz, CP, et al. MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia. Oncogene 2002;21:4849–4854.CrossRefGoogle ScholarPubMed
Kratz, CP, Emerling, BM, Bonifas, J, et al. Genomic structure of the PIK3CG gene on chromosome band 7q22 and evaluation as a candidate myeloid tumor suppressor. Blood 2002;99:372–374.CrossRefGoogle ScholarPubMed
Kratz, CP, Emerling, BM, Donovan, S, et al. Candidate gene isolation and comparative analysis of a commonly deleted segment of 7q22 implicated in myeloid malignancies. Genomics 2001;77:171–180.CrossRefGoogle ScholarPubMed
Nikoloski, G, Langemeijer, SM, Kuiper, RP, et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 2010;42:665–667.CrossRefGoogle ScholarPubMed
Bejar, R, Stevenson, K, Abdel-Wahab, O, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011;364:2496–2506.CrossRefGoogle ScholarPubMed
Hasle, H, Niemeyer, CM, Chessells, JM, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia 2003;17:277–282.CrossRefGoogle ScholarPubMed
Andersen, MK, Christiansen, DH, Kirchhoff, M, Pedersen-Bjergaard, J. Duplication or amplification of chromosome band 11q23, including the unrearranged MLL gene, is a recurrent abnormality in therapy-related MDS and AML, and is closely related to mutation of the TP53 gene and to previous therapy with alkylating agents. Genes Chromosomes Cancer 2001;31:33–41.CrossRefGoogle ScholarPubMed
Christiansen, DH, Andersen, MK, Pedersen-Bjergaard, J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 2001;19:1405–1413.CrossRefGoogle ScholarPubMed
Boultwood, J, Lewis, S, Wainscoat, JS. The 5q- syndrome. Blood 1994;84:3253–3260.Google ScholarPubMed
Fairman, J, Wang, RY, Liang, H, et al. Translocations and deletions of 5q13.1 in myelodysplasia and acute myelogenous leukemia: evidence for a novel critical locus. Blood 1996;88:2259–2266.Google ScholarPubMed
Willman, CL, Sever, CE, Pallavicini, MG, et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in human leukemia and preleukemic myelodysplasia. Science 1993;259:968–971.CrossRefGoogle ScholarPubMed
Zhao, N, Stoffel, A, Wang, PW, et al. Molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases to 1–1.5 Mb and preparation of a PAC-based physical map. Proc Natl Acad Sci USA 1997;94:6948–6953.CrossRefGoogle ScholarPubMed
Lezon-Geyda, K, Najfeld, V, Johnson, EM. Deletions of PURA, at 5q31, and PURB, at 7p13, in myelodysplastic syndrome and progression to acute myelogenous leukemia. Leukemia 2001;15:954–962.CrossRefGoogle ScholarPubMed
Eisenmann, KM, Dykema, KJ, Matheson, SF, et al. 5q- myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics. Oncogene 2009;28:3429–3441.CrossRefGoogle ScholarPubMed
Liu, TX, Becker, MW, Jelinek, J, et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 2007;13:78–83.CrossRefGoogle Scholar
Joslin, JM, Fernald, AA, Tennant, TR, et al. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 2007;110:719–726.CrossRefGoogle Scholar
Ebert, BL, Pretz, J, Bosco, J, et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008;451:335–339.CrossRefGoogle ScholarPubMed
Castro, PD, Fairman, J, Nagarajan, L. The unexplored 5q13 locus: a role in hematopoietic malignancies. Leuk Lymphoma 1998;30:443–448.CrossRefGoogle ScholarPubMed
Castro, P, Liang, H, Liang, JC, Nagarajan, L. A novel, evolutionarily conserved gene family with putative sequence-specific single-stranded DNA-binding activity. Genomics 2002;80:78–85.CrossRefGoogle ScholarPubMed
Castro, PD, Liang, JC, Nagarajan, L. Deletions of chromosome 5q13.3 and 17p loci cooperate in myeloid neoplasms. Blood 2000;95:2138–2143.Google ScholarPubMed
Athanasiadou, A, Saloum, R, Zorbas, I, et al. Therapy-related myelodysplastic syndrome with monosomy 5 and 7 following successful therapy for acute promyelocytic leukemia with anthracyclines. Leuk Lymphoma 2002;43:2409–2411.CrossRefGoogle ScholarPubMed
Corey, SJ, Minden, MD, Barber, DL, et al. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 2007;7:118–129.CrossRefGoogle ScholarPubMed
Nimer, SD. MDS: a stem cell disorder – but what exactly is wrong with the primitive hematopoietic cells in this disease?Hematology Am Soc Hematol Educ Program 2008:43–51.Google ScholarPubMed
Nimer, SD. Myelodysplastic syndromes. Blood 2008;111:4841–4851.CrossRefGoogle ScholarPubMed
Sabnis, AJ, Cheung, LS, Dail, M, et al. Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol 2009;7:e59.CrossRefGoogle ScholarPubMed
Side, LE, Curtiss, NP, Teel, K, et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 2004;39:217–223.CrossRefGoogle ScholarPubMed
Renneville, A, Roumier, C, Biggio, V, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia 2008;22:915–931.CrossRefGoogle ScholarPubMed
Small, D. Targeting FLT3 for the treatment of leukemia. Semin Hematol 2008;45:S17–S21.CrossRefGoogle ScholarPubMed
Zheng, R, Small, D. Mutant FLT3 signaling contributes to a block in myeloid differentiation. Leuk Lymphoma 2005;46:1679–1687.CrossRefGoogle ScholarPubMed
Christiansen, DH, Andersen, MK, Desta, F, Pedersen-Bjergaard, J. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS–BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2005;19:2232–2240.CrossRefGoogle ScholarPubMed
Leonard, DG, Travis, LB, Addya, K, et al. p53 mutations in leukemia and myelodysplastic syndrome after ovarian cancer. Clin Cancer Res 2002;8:973–985.Google ScholarPubMed
Jonveaux, P, Fenaux, P, Quiquandon, I, et al. Mutations in the p53 gene in myelodysplastic syndromes. Oncogene 1991;6:2243–2247.Google ScholarPubMed
Sugimoto, K, Hirano, N, Toyoshima, H, et al. Mutations of the p53 gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Blood 1993;81:3022–3026.Google ScholarPubMed
Andersen, MK, Christiansen, DH, Pedersen-Bjergaard, J. Centromeric breakage and highly rearranged chromosome derivatives associated with mutations of TP53 are common in therapy-related MDS and AML after therapy with alkylating agents: an M-FISH study. Genes Chromosomes Cancer 2005;42:358–371.CrossRefGoogle ScholarPubMed
Christiansen, DH, Andersen, MK, Pedersen-Bjergaard, J. Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2003;17:1813–1819.CrossRefGoogle ScholarPubMed
Qian, Z, Fernald, AA, Godley, LA, Larson, RA, Le Beau, MM. Expression profiling of CD34+ hematopoietic stem/progenitor cells reveals distinct subtypes of therapy-related acute myeloid leukemia. Proc Natl Acad Sci USA 2002;99:14925–14930.CrossRefGoogle ScholarPubMed
Harada, H, Harada, Y, Tanaka, H, Kimura, A, Inaba, T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003;101:673–680.CrossRefGoogle ScholarPubMed
Voso, MT, Scardocci, A, Guidi, F, et al. Aberrant methylation of DAP-kinase in therapy-related acute myeloid leukemia and myelodysplastic syndromes. Blood 2004;103:698–700.CrossRefGoogle ScholarPubMed
Gattermann, N, Wulfert, M, Junge, B, et al. Ineffective hematopoiesis linked with a mitochondrial tRNA mutation (G3242A) in a patient with myelodysplastic syndrome. Blood 2004;103:1499–1502.CrossRefGoogle Scholar
Carew, JS, Zhou, Y, Albitar, M, et al. Mitochondrial DNA mutations in primary leukemia cells after chemotherapy: clinical significance and therapeutic implications. Leukemia 2003;17:1437–1447.CrossRefGoogle ScholarPubMed
Tartaglia, M, Niemeyer, CM, Fragale, A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 2003;34:148–150.CrossRefGoogle ScholarPubMed
Tartaglia, M, Niemeyer, CM, Shannon, KM, Loh, ML. SHP-2 and myeloid malignancies. Curr Opin Hematol 2004;11:44–50.CrossRefGoogle ScholarPubMed
Christiansen, DH, Desta, F, Andersen, MK, Pedersen-Bjergaard, J. Mutations of the PTPN11 gene in therapy-related MDS and AML with rare balanced chromosome translocations. Genes Chromosomes Cancer 2007;46:517–521.CrossRefGoogle ScholarPubMed
Langemeijer, SM, Kuiper, RP, Berends, M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009;41:838–842.CrossRefGoogle ScholarPubMed
Delhommeau, F, Dupont, S, Della, Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360:2289–2301.CrossRefGoogle ScholarPubMed
Olney, HJ, Mitelman, F, Johansson, B, et al. Unique balanced chromosome abnormalities in treatment-related myelodysplastic syndromes and acute myeloid leukemia: report from an international workshop. Genes Chromosomes Cancer 2002;33:413–423.CrossRefGoogle ScholarPubMed
Rowley, JD, Olney, HJ. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 2002;33:331–345.CrossRefGoogle ScholarPubMed
Kantarjian, HM, Keating, MJ, Walters, RS, et al. The association of specific “favorable” cytogenetic abnormalities with secondary leukemia. Cancer 1986;58:924–927.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Quesnel, B, Kantarjian, H, Bjergaard, JP, et al. Therapy-related acute myeloid leukemia with t(8;21), inv(16), and t(8;16): a report on 25 cases and review of the literature. J Clin Oncol 1993;11:2370–2379.CrossRefGoogle Scholar
Rubin, CM, Larson, RA, Anastasi, J, et al. t(3;21)(q26;q22): a recurring chromosomal abnormality in therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood 1990;76:2594–2598.Google Scholar
Nucifora, G, Begy, CR, Erickson, P, Drabkin, HA, Rowley, JD. The 3;21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein–Barr virus small RNA EBER 1. Proc Natl Acad Sci USA 1993;90:7784–7788.CrossRefGoogle Scholar
Nucifora, G, Rowley, JD. AML1 and the 8;21 and 3;21 translocations in acute and chronic myeloid leukemia. Blood 1995;86:1–14.Google ScholarPubMed
Roulston, D, Espinosa, R, 3rd, Nucifora, G, et al. CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: association with prior therapy. Blood 1998;92:2879–2885.Google ScholarPubMed
Slovak, ML, Bedell, V, Popplewell, L, et al. 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an international workshop. Genes Chromosomes Cancer 2002;33:379–394.CrossRefGoogle ScholarPubMed
Andersen, MK, Larson, RA, Mauritzson, N, et al. Balanced chromosome abnormalities inv(16) and t(15;17) in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002;33:395–400.CrossRefGoogle Scholar
Pedersen-Bjergaard, J, Andersen, MK, Johansson, B. Balanced chromosome aberrations in leukemias following chemotherapy with DNA-topoisomerase II inhibitors. J Clin Oncol 1998;16:1897–1898.CrossRefGoogle ScholarPubMed
Pedersen-Bjergaard, J, Rowley, JD. The balanced and the unbalanced chromosome aberrations of acute myeloid leukemia may develop in different ways and may contribute differently to malignant transformation. Blood 1994;83:2780–2786.Google ScholarPubMed
Fenaux, P, Lucidarme, D, Lai, JL, Bauters, F. Favorable cytogenetic abnormalities in secondary leukemia. Cancer 1989;63:2505–2508.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Pedersen-Bjergaard, J, Brondum-Nielsen, K, Karle, H, Johansson, B. Chemotherapy-related – late occurring – Philadelphia chromosome in AML, ALL and CML. Similar events related to treatment with DNA topoisomerase II inhibitors?Leukemia 1997;11:1571–1574.CrossRefGoogle ScholarPubMed
Stark, B, Jeison, M, Shohat, M, et al. Involvement of 11p15 and 3q21q26 in therapy-related myeloid leukemia (t-ML) in children. Case reports and review of the literature. Cancer Genet Cytogenet 1994;75:11–22.CrossRefGoogle ScholarPubMed
Kobayashi, H, Arai, Y, Hosoda, F, et al. Inversion of chromosome 11 inv(11)(p15q22), as a recurring chromosomal aberration associated with de novo and secondary myeloid malignancies: identification of a P1 clone spanning the 11q22 breakpoint. Genes Chromosomes Cancer 1997;19:150–155.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Raza-Egilmez, SZ, Jani-Sait, SN, Grossi, M, et al. NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998;58:4269–4273.Google ScholarPubMed
Borrow, J, Shearman, AM, Stanton, VP, Jr., et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996;12:159–167.CrossRefGoogle Scholar
Nakamura, T, Yamazaki, Y, Hatano, Y, Miura, I. NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15). Blood 1999;94:741–747.Google Scholar
Arai, Y, Hosoda, F, Kobayashi, H, et al. The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10. Blood 1997;89:3936–3944.Google ScholarPubMed
Ahuja, HG, Felix, CA, Aplan, PD. The t(11;20)(p15;q11) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in an NUP98-TOP1 fusion. Blood 1999;94:3258–3261.Google Scholar
Ahuja, HG, Felix, CA, Aplan, PD. Potential role for DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Genes Chromosomes Cancer 2000;29:96–105.3.0.CO;2-T>CrossRefGoogle Scholar
Ikeda, T, Ikeda, K, Sasaki, K, Kawakami, K, Takahara, J. The inv(11)(p15q22) chromosome translocation of therapy-related myelodysplasia with NUP98-DDX10 and DDX10-NUP98 fusion transcripts. Int J Hematol 1999;69:160–164.Google ScholarPubMed
Panagopoulos, I, Fioretos, T, Isaksson, M, et al. Expression of NUP98/TOP1, but not of TOP1/NUP98, in a treatment-related myelodysplastic syndrome with t(10;20;11)(q24;q11;p15). Genes Chromosomes Cancer 2002;34:249–254.CrossRefGoogle Scholar
Lam, DH, Aplan, PD. NUP98 gene fusions in hematologic malignancies. Leukemia 2001;15:1689–1695.CrossRefGoogle ScholarPubMed
Nakao, K, Nishino, M, Takeuchi, K, et al. Fusion of the nucleoporin gene, NUP98, and the putative RNA helicase gene, DDX10, by inversion 11 (p15q22) chromosome translocation in a patient with etoposide-related myelodysplastic syndrome. Intern Med 2000;39:412–415.CrossRefGoogle Scholar
Silva, ML, Land, MG, Maradei, S, et al. Translocation (11;11)(p13-p15;q23) in a child with therapy-related acute myeloid leukemia following chemotherapy with DNA-topoisomerase II inhibitors for Langerhans cell histiocytosis. Cancer Genet Cytogenet 2002;135:101–102.CrossRefGoogle Scholar
Gervais, C, Mauvieux, L, Perrusson, N, et al. A new translocation t(9;11)(q34;p15) fuses NUP98 to a novel homeobox partner gene, PRRX2, in a therapy-related acute myeloid leukemia. Leukemia 2005;19:145–148.CrossRefGoogle Scholar
Slape, C, Aplan, PD. The role of NUP98 gene fusions in hematologic malignancy. Leuk Lymphoma 2004;45:1341–1350.CrossRefGoogle ScholarPubMed
Takeshita, A, Naito, K, Shinjo, K, et al. Deletion 6p23 and add(11)(p15) leading to NUP98 translocation in a case of therapy-related atypical chronic myelocytic leukemia transforming to acute myelocytic leukemia. Cancer Genet Cytogenet 2004;152:56–60.CrossRefGoogle Scholar
Kobzev, YN, Martinez-Climent, J, Lee, S, Chen, J, Rowley, JD. Analysis of translocations that involve the NUP98 gene in patients with 11p15 chromosomal rearrangements. Genes Chromosomes Cancer 2004;41:339–352.CrossRefGoogle ScholarPubMed
Nishiyama, M, Arai, Y, Tsunematsu, Y, et al. 11p15 translocations involving the NUP98 gene in childhood therapy-related acute myeloid leukemia/myelodysplastic syndrome. Genes Chromosomes Cancer 1999;26:215–220.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Spector, LG, Xie, Y, Robison, LL, et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the Children's Oncology Group. Cancer Epidemiol Biomarkers Prev 2005;14:651–655.CrossRefGoogle ScholarPubMed
Wiemels, JL, Pagnamenta, A, Taylor, GM, et al. A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res 1999;59:4095–4099.Google ScholarPubMed
Lindsey, RH, Jr., Bromberg, KD, Felix, CA, Osheroff, N.1,4-Benzoquinone is a topoisomerase II poison. Biochemistry 2004;43:7563–7574.CrossRefGoogle ScholarPubMed
Andersen, MK, Johansson, B, Larsen, SO, Pedersen-Bjergaard, J. Chromosomal abnormalities in secondary MDS and AML. Relationship to drugs and radiation with specific emphasis on the balanced rearrangements. Haematologica 1998;83:483–488.Google ScholarPubMed
Yu, BD, Hess, JL, Horning, SE, Brown, GA, Korsmeyer, SJ. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995;378:505–508.CrossRefGoogle ScholarPubMed
Hess, JL, Yu, BD, Li, B, Hanson, R, Korsmeyer, SJ. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997;90:1799–1806.Google ScholarPubMed
Yagi, H, Deguchi, K, Aono, A, et al. Growth disturbance in fetal liver hematopoiesis of Mll-mutant mice. Blood 1998;92:108–117.Google ScholarPubMed
Jude, CD, Climer, L, Xu, D, et al. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007;1:324–337.CrossRefGoogle ScholarPubMed
Caslini, C, Shilatifard, A, Yang, L, Hess, JL. The amino terminus of the mixed lineage leukemia protein (MLL) promotes cell cycle arrest and monocytic differentiation. Proc Natl Acad Sci USA 2000;97:2797–2802.CrossRefGoogle ScholarPubMed
Caslini, C, Alarcon, AS, Hess, JL, et al. The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds. Leukemia 2000;14:1898–1908.CrossRefGoogle ScholarPubMed
Jin, S, Zhao, H, Yi, Y, et al. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J Clin Invest 2010; 120:593–606.CrossRefGoogle ScholarPubMed
Liedtke, M, Cleary, ML. Therapeutic targeting of MLL. Blood 2009;113:6061–6068.CrossRefGoogle ScholarPubMed
Xia, ZB, Anderson, M, Diaz, MO, Zeleznik-Le, NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003;100:8342–8347.CrossRefGoogle ScholarPubMed
Yokoyama, A, Kitabayashi, I, Ayton, PM, Cleary, ML, Ohki, M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 2002;100:3710–3718.CrossRefGoogle ScholarPubMed
Allen, MD, Grummitt, CG, Hilcenko, C, et al. Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J 2006;25:4503–4512.CrossRefGoogle ScholarPubMed
Fair, K, Anderson, M, Bulanova, E, et al. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001;21:3589–3597.CrossRefGoogle ScholarPubMed
Milne, TA, Briggs, SD, Brock, HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002;10:1107–1117.CrossRefGoogle ScholarPubMed
Hsieh, JJ, Cheng, EH, Korsmeyer, SJ. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 2003;115:293–303.CrossRefGoogle ScholarPubMed
Takeda, S, Chen, DY, Westergard, TD, et al. Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev 2006;20:2397–2409.CrossRefGoogle ScholarPubMed
Nakamura, T, Mori, T, Tada, S, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002;10:1119–1128.CrossRefGoogle ScholarPubMed
Hsieh, JJ, Ernst, P, Erdjument-Bromage, H, Tempst, P, Korsmeyer, SJ. Proteolytic cleavage of MLL generates a complex of N- and C-terminal fragments that confers protein stability and subnuclear localization. Mol Cell Biol 2003;23:186–194.CrossRefGoogle ScholarPubMed
Liu, H, Cheng, EH, Hsieh, JJ. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev 2007;21:2385–2398.CrossRefGoogle ScholarPubMed
Marschalek, R. Mechanisms of leukemogenesis by MLL fusion proteins. Br J Haematol 2011;152:141–154.CrossRefGoogle ScholarPubMed
Meyer, C, Kowarz, E, Hofmann, J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia 2009;23:1490–1499.CrossRefGoogle ScholarPubMed
Sano, K, Hayakawa, A, Piao, JH, Kosaka, Y, Nakamura, H. Novel SH3 protein encoded by the AF3p21 gene is fused to the mixed lineage leukemia protein in a therapy-related leukemia with t(3;11) (p21;q23). Blood 2000;95:1066–1068.Google Scholar
Pegram, LD, Megonigal, MD, Lange, BJ, et al. t(3;11) translocation in treatment-related acute myeloid leukemia fuses MLL with the GMPS (guanosine 5′-monophosphate synthetase) gene. Blood 2000;96:4360–4362.Google Scholar
Daheron, L, Veinstein, A, Brizard, F, et al. Human LPP gene is fused to MLL in a secondary acute leukemia with a t(3;11) (q28;q23). Genes Chromosomes Cancer 2001;31:382–389.CrossRefGoogle Scholar
Hillion, J, Le, Coniat M, Jonveaux, P, Berger, R, Bernard, OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 1997;90:3714–3719.Google Scholar
Taki, T, Sako, M, Tsuchida, M, Hayashi, Y. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 1997;89:3945–3950.Google Scholar
Sobulo, OM, Borrow, J, Tomek, R, et al. MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci USA 1997;94:8732–8737.CrossRefGoogle Scholar
Rowley, JD, Reshmi, S, Sobulo, O, et al. All patients with the t(11;16)(q23;p13.3) that involves MLL and CBP have treatment-related hematologic disorders. Blood 1997;90:535–541.Google Scholar
Osaka, M, Rowley, JD, Zeleznik-Le, NJ. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci USA 1999;96:6428–6433.CrossRefGoogle Scholar
Ida, K, Kitabayashi, I, Taki, T, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 1997;90:4699–4704.Google Scholar
Hayette, S, Cornillet-Lefebvre, P, Tigaud, I, et al. AF4p12, a human homologue to the furry gene of Drosophila, as a novel MLL fusion partner. Cancer Res 2005;65:6521–6525.CrossRefGoogle ScholarPubMed
Domer, PH, Head, DR, Renganathan, N, et al. Molecular analysis of 13 cases of MLL/11q23 secondary acute leukemia and identification of topoisomerase II consensus-binding sequences near the chromosomal breakpoint of a secondary leukemia with the t(4;11). Leukemia 1995;9:1305–1312.Google Scholar
Atlas, M, Head, D, Behm, F, et al. Cloning and sequence analysis of four t(9;11) therapy-related leukemia breakpoints. Leukemia 1998;12:1895–1902.CrossRefGoogle Scholar
Megonigal, MD, Rappaport, EF, Wilson, RB, et al. Panhandle PCR for cDNA: a rapid method for isolation of MLL fusion transcripts involving unknown partner genes. Proc Natl Acad Sci USA 2000;97:9597–9602.CrossRefGoogle ScholarPubMed
Lovett, BD, Lo Nigro, L, Rappaport, EF, et al. Near-precise interchromosomal recombination and functional DNA topoisomerase II cleavage sites at MLL and AF-4 genomic breakpoints in treatment-related acute lymphoblastic leukemia with t(4;11) translocation. Proc Natl Acad Sci USA 2001;98:9802–9807.CrossRefGoogle Scholar
Raffini, LJ, Slater, DJ, Rappaport, EF, et al. Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci USA 2002;99:4568–4573.CrossRefGoogle ScholarPubMed
Ma, C, Staudt, LM. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 1996;87:734–745.Google Scholar
Nilson, I, Reichel, M, Ennas, MG, et al. Exon/intron structure of the human AF-4 gene, a member of the AF-4/LAF-4/FMR-2 gene family coding for a nuclear protein with structural alterations in acute leukaemia. Br J Haematol 1997;98:157–169.CrossRefGoogle ScholarPubMed
Taki, T, Kano, H, Taniwaki, M, et al. AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). Proc Natl Acad Sci USA 1999;96:14535–14540.CrossRefGoogle Scholar
Megonigal, MD, Rappaport, EF, Jones, DH, et al. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci USA 1998;95:6413–6418.CrossRefGoogle Scholar
Ono, R, Taki, T, Taketani, T, et al. SEPTIN6, a human homologue to mouse Septin6, is fused to MLL in infant acute myeloid leukemia with complex chromosomal abnormalities involving 11q23 and Xq24. Cancer Res 2002;62:333–337.Google Scholar
Slater, DJ, Hilgenfeld, E, Rappaport, EF, et al. MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(X;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site. Oncogene 2002;21:4706–4714.CrossRefGoogle Scholar
So, CW, Cleary, ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 2003;101:633–639.CrossRefGoogle ScholarPubMed
So, CW, Cleary, ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 2002;22:6542–6552.CrossRefGoogle ScholarPubMed
Borkhardt, A, Repp, R, Haas, OA, et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 1997;14:195–202.CrossRefGoogle Scholar
Bitoun, E, Oliver, PL, Davies, KE. The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007;16:92–106.CrossRefGoogle ScholarPubMed
Corral, J, Lavenir, I, Impey, H, et al. An Mll-Af9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996;85:853–861.CrossRefGoogle ScholarPubMed
Ayton, PM, Cleary, ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001;20:5695–5707.CrossRefGoogle ScholarPubMed
Lavau, C, Szilvassy, SJ, Slany, R, Cleary, ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997;16:4226–4237.CrossRefGoogle ScholarPubMed
Lavau, C, Du, C, Thirman, M, Zeleznik-Le, N. Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 2000;19:4655–4664.CrossRefGoogle ScholarPubMed
Lavau, C, Luo, RT, Du, C, Thirman, MJ. Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci USA 2000;97:10984–10989.CrossRefGoogle ScholarPubMed
So, CW, Karsunky, H, Passegue, E, et al. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003;3:161–171.CrossRefGoogle ScholarPubMed
Liedman, D, Zeleznik-Le, N. Retroviral transduction model of mixed lineage leukemia fused to CREB binding protein. Curr Opin Hematol 2001;8:218–223.CrossRefGoogle ScholarPubMed
So, CW, Lin, M, Ayton, PM, Chen, EH, Cleary, ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003;4:99–110.CrossRefGoogle ScholarPubMed
Armstrong, SA, Staunton, JE, Silverman, LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002;30:41–47.CrossRefGoogle ScholarPubMed
Zeisig, BB, Milne, T, Garcia-Cuellar, MP, et al. Hoxa9 and Meis1 are key targets for MLL–ENL-mediated cellular immortalization. Mol Cell Biol 2004;24:617–628.CrossRefGoogle ScholarPubMed
Ayton, PM, Cleary, ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003;17:2298–2307.CrossRefGoogle ScholarPubMed
Chen, W, Li, Q, Hudson, WA, et al. A murine Mll-Af4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006;108:669–677.CrossRefGoogle ScholarPubMed
So, CW, Karsunky, H, Wong, P, Weissman, IL, Cleary, ML. Leukemic transformation of hematopoietic progenitors by MLL–GAS7 in the absence of Hoxa7 or Hoxa9. Blood 2004;103:3192–3199.CrossRefGoogle ScholarPubMed
Wong, P, Iwasaki, M, Somervaille, TC, So, CW, Cleary, ML. Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007;21:2762–2774.CrossRefGoogle ScholarPubMed
Kowarz, E, Burmeister, T, Lo Nigro, L, et al. Complex MLL rearrangements in t(4;11) leukemia patients with absent AF4.MLL fusion allele. Leukemia 2007;21:1232–1238.CrossRefGoogle Scholar
Gaussmann, A, Wenger, T, Eberle, I, et al. Combined effects of the two reciprocal t(4;11) fusion proteins MLL.AF4 and AF4.MLL confer resistance to apoptosis, cell cycling capacity and growth transformation. Oncogene 2007;26:3352–3363.CrossRefGoogle Scholar
Scharf, S, Zech, J, Bursen, A, et al. Transcription linked to recombination: a gene-internal promoter coincides with the recombination hot spot II of the human MLL gene. Oncogene 2007;26:1361–1371.CrossRefGoogle ScholarPubMed
Somervaille, TC, Cleary, ML. Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006;10:257–268.CrossRefGoogle ScholarPubMed
Krivtsov, AV, Twomey, D, Feng, Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006;442:818–822.CrossRefGoogle ScholarPubMed
Wang, J, Iwasaki, H, Krivtsov, A, et al. Conditional MLL–CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 2005;24:368–381.CrossRefGoogle ScholarPubMed
Somervaille, TC, Matheny, CJ, Spencer, GJ, et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009;4:129–140.CrossRefGoogle ScholarPubMed
Arnold, CP, Tan, R, Zhou, B, et al. MicroRNA programs in normal and aberrant stem and progenitor cells. Genome Res 2011;21:798–810.CrossRefGoogle ScholarPubMed
Wang, Z, Smith, KS, Murphy, M, et al. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008;455:1205–1209.CrossRefGoogle ScholarPubMed
Linggi, BE, Brandt, SJ, Sun, ZW, Hiebert, SW. Translating the histone code into leukemia. J Cell Biochem 2005;96:938–950.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Raimondi, SC, Halbert, AR, et al. Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution's experience. Leukemia 2002;16:2072–2077.CrossRefGoogle Scholar
Amann, JM, Nip, J, Strom, DK, et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 2001;21:6470–6483.CrossRefGoogle Scholar
Linggi, B, Muller-Tidow, C, van de Locht, L, et al. The t(8;21) fusion protein, AML1–ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 2002;8:743–750.CrossRefGoogle Scholar
Ottone, T, Hasan, SK, Montefusco, E, et al. Identification of a potential “hotspot” DNA region in the RUNX1 gene targeted by mitoxantrone in therapy-related acute myeloid leukemia with t(16;21) translocation. Genes Chromosomes Cancer 2009;48:213–221.CrossRefGoogle Scholar
Dissing, M, Le Beau, MM, Pedersen-Bjergaard, J. Inversion of chromosome 16 and uncommon rearrangements of the CBFB and MYH11 genes in therapy-related acute myeloid leukemia: rare events related to DNA-topoisomerase II inhibitors?J Clin Oncol 1998;16:1890–1896.CrossRefGoogle ScholarPubMed
Melnick, A, Licht, JD. Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 1999;93:3167–3215.Google ScholarPubMed
Block, AW, Carroll, AJ, Hagemeijer, A, et al. Rare recurring balanced chromosome abnormalities in therapy-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002;33:401–412.CrossRefGoogle ScholarPubMed
Borrow, J, Stanton, VP, Jr., Andresen, JM, et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 1996;14:33–41.CrossRefGoogle Scholar
Petrij, F, Giles, RH, Dauwerse, HG, et al. Rubinstein–Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 1995;376:348–351.CrossRefGoogle ScholarPubMed
Champagne, N, Pelletier, N, Yang, XJ. The monocytic leukemia zinc finger protein MOZ is a histone acetyltransferase. Oncogene 2001;20:404–409.CrossRefGoogle ScholarPubMed
Camos, M, Esteve, J, Jares, P, et al. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res 2006;66:6947–6954.CrossRefGoogle Scholar
Mauritzson, N, Albin, M, Rylander, L, et al. Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976–1993 and on 5098 unselected cases reported in the literature 1974–2001. Leukemia 2002;16:2366–2378.CrossRefGoogle ScholarPubMed
Mimura, N, Tsujimura, H, Ise, M, et al. Therapy-related leukemia following chemoradiotherapy for esophageal cancer. Eur J Haematol 2010;85:353–357.CrossRefGoogle ScholarPubMed
Waldman, D, Weintraub, M, Freeman, A, et al. Favorable early response of secondary chronic myeloid leukemia to imatinib. Am J Hematol 2004;75:217–219.CrossRefGoogle ScholarPubMed
Chen, W, Wang, E, Lu, Y, Gaal, KK, Huang, Q. Therapy-related acute lymphoblastic leukemia without 11q23 abnormality: report of six cases and a literature review. Am J Clin Pathol 2010;133:75–82.CrossRefGoogle Scholar
Gilliland, DG, Jordan, CT, Felix, CA. The molecular basis of leukemia. Hematology Am Soc Hematol Educ Program 2004: 80–97.Google ScholarPubMed
Schnittger, S, Bacher, U, Kern, W, Haferlach, C, Haferlach, T. JAK2 seems to be a typical cooperating mutation in therapy-related t(8;21)/AML1-ETO-positive AML. Leukemia 2007;21:183–184.CrossRefGoogle Scholar
Schnittger, S, Bacher, U, Kern, W, Haferlach, T, Haferlach, C. JAK2V617F as progression marker in CMPD and as cooperative mutation in AML with trisomy 8 and t(8;21): a comparative study on 1103 CMPD and 269 AML cases. Leukemia 2007;21:1843–1845.CrossRefGoogle Scholar
Andersson, A, Paulsson, K, Lilljebjorn, H, et al. FLT3 mutations in a 10 year consecutive series of 177 childhood acute leukemias and their impact on global gene expression patterns. Genes Chromosomes Cancer 2008;47:64–70.CrossRefGoogle Scholar
Brown, P, Meshinchi, S, Levis, M, et al. Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood 2004;104:1841–1849.CrossRefGoogle ScholarPubMed
Brown, P, Small, D. FLT3 inhibitors: a paradigm for the development of targeted therapeutics for paediatric cancer. Eur J Cancer 2004;40:707–721; discussion 722–704.CrossRefGoogle ScholarPubMed
Taketani, T, Taki, T, Sugita, K, et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004;103:1085–1088.CrossRefGoogle ScholarPubMed
Libura, M, Asnafi, V, Tu, A, et al. FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood 2003;102:2198–2204.CrossRefGoogle ScholarPubMed
Kayser, S, Dohner, K, Krauter, J, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 2011;117:2137–2145.CrossRefGoogle ScholarPubMed
Stubbs, MC, Kim, YM, Krivtsov, AV, et al. MLL–AF9 and FLT3 cooperation in acute myelogenous leukemia: development of a model for rapid therapeutic assessment. Leukemia 2008;22:66–77.CrossRefGoogle ScholarPubMed
Yin, CC, Glassman, AB, Lin, P, et al. Morphologic, cytogenetic, and molecular abnormalities in therapy-related acute promyelocytic leukemia. Am J Clin Pathol 2005;123:840–848.CrossRefGoogle ScholarPubMed
Goemans, BF, Zwaan, CM, Miller, M, et al. Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 2005;19:1536–1542.CrossRefGoogle ScholarPubMed
Tartaglia, M, Martinelli, S, Iavarone, I, et al. Somatic PTPN11 mutations in childhood acute myeloid leukaemia. Br J Haematol 2005;129:333–339.CrossRefGoogle ScholarPubMed
Dicker, F, Haferlach, C, Sundermann, J, et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 2010;24:1528–1532.CrossRefGoogle ScholarPubMed
Tan, AY, Westerman, DA, Carney, DA, et al. Detection of NPM1 exon 12 mutations and FLT3-internal tandem duplications by high resolution melting analysis in normal karyotype acute myeloid leukemia. J Hematol Oncol 2008;1:10.CrossRefGoogle ScholarPubMed
Eguchi, M, Eguchi-Ishimae, M, Knight, D, et al. MLL chimeric protein activation renders cells vulnerable to chromosomal damage: an explanation for the very short latency of infant leukemia. Genes Chromosomes Cancer 2006;45:754–760.CrossRefGoogle ScholarPubMed
Slupianek, A, Nowicki, MO, Koptyra, M, Skorski, T. BCR/ABL modifies the kinetics and fidelity of DNA double-strand breaks repair in hematopoietic cells. DNA Repair 2006;5:243–250.CrossRefGoogle ScholarPubMed
Bloomfield, CD, Archer, KJ, Mrozek, K, et al. 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 2002;33:362–378.CrossRefGoogle ScholarPubMed
Zuna, J, Burjanivova, T, Mejstrikova, E, et al. Covert preleukemia driven by MLL gene fusion. Genes Chromosomes Cancer 2009;48:98–107.CrossRefGoogle ScholarPubMed
Johnson, JJ, Chen, W, Hudson, W, et al. Prenatal and postnatal myeloid cells demonstrate stepwise progression in the pathogenesis of MLL fusion gene leukemia. Blood 2003;101:3229–3235.CrossRefGoogle ScholarPubMed
Stirewalt, DL, Choi, YE, Sharpless, NE, et al. Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells. Leukemia 2009;23:391–393.CrossRefGoogle ScholarPubMed
Notta, F, Mullighan, CG, Wang, JC, et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011;469:362–367.CrossRefGoogle ScholarPubMed
Whitmarsh, RJ, Saginario, C, Zhuo, Y, et al. Reciprocal DNA topoisomerase II cleavage events at 5′-TATTA-3′ sequences in MLL and AF-9 create homologous single-stranded overhangs that anneal to form der(11) and der(9) genomic breakpoint junctions in treatment-related AML without further processing. Oncogene 2003;22:8448–8459.CrossRefGoogle ScholarPubMed
Langer, T, Metzler, M, Reinhardt, D, et al. Analysis of t(9;11) chromosomal breakpoint sequences in childhood acute leukemia: almost identical MLL breakpoints in therapy-related AML after treatment without etoposides. Genes Chromosomes Cancer 2003;36:393–401.CrossRefGoogle Scholar
Gillert, E, Leis, T, Repp, R, et al. A DNA damage repair mechanism is involved in the origin of chromosomal translocations t(4;11) in primary leukemic cells. Oncogene 1999;18:4663–4671.CrossRefGoogle Scholar
Rasio, D, Schichman, SA, Negrini, M, Canaani, E, Croce, CM. Complete exon structure of the ALL1 gene. Cancer Res 1996;56:1766–1769.Google ScholarPubMed
Blanco, JG, Dervieux, T, Edick, MJ, et al. Molecular emergence of acute myeloid leukemia during treatment for acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2001;98:10338–10343.CrossRefGoogle ScholarPubMed
Libura, J, Slater, DJ, Felix, CA, Richardson, C. Therapy-related acute myeloid leukemia-like MLL rearrangements are induced by etoposide in primary human CD34+ cells and remain stable after clonal expansion. Blood 2005;105:2124–2131.CrossRefGoogle ScholarPubMed
Povirk, LF. Biochemical mechanisms of chromosomal translocations resulting from DNA double-strand breaks. DNA Repair 2006;5:1199–1212.CrossRefGoogle ScholarPubMed
Nitiss, JL. DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 2009;9:327–337.CrossRefGoogle ScholarPubMed
Bolton, JL, Trush, MA, Penning, TM, Dryhurst, G, Monks, TJ. Role of quinones in toxicology. Chem Res Toxicol 2000;13:135–160.CrossRefGoogle Scholar
Kingma, PS, Osheroff, N. Apurinic sites are position-specific topoisomerase II poisons. J Biol Chem 1997;272:1148–1155.CrossRefGoogle ScholarPubMed
Kingma, PS, Corbett, AH, Burcham, PC, Marnett, LJ, Osheroff, N. Abasic sites stimulate double-stranded DNA cleavage mediated by topoisomerase II. DNA lesions as endogenous topoisomerase II poisons. J Biol Chem 1995;270:21441–21444.CrossRefGoogle ScholarPubMed
Mistry, AR, Felix, CA, Whitmarsh, RJ, et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med 2005;352:1529–1538.CrossRefGoogle ScholarPubMed
Lyu, YL, Lin, CP, Azarova, AM, et al. Role of topoisomerase IIbeta in the expression of developmentally regulated genes. Mol Cell Biol 2006;26:7929–7941.CrossRefGoogle ScholarPubMed
Nitiss, JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009;9:338–350.CrossRefGoogle ScholarPubMed
Azarova, AM, Lin, RK, Tsai, YC, et al. Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia. Biochem Biophys Res Commun 2010;399:66–71.CrossRefGoogle ScholarPubMed
Azarova, AM, Lyu, YL, Lin, CP, et al. Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci USA 2007;104:11014–11019.CrossRefGoogle ScholarPubMed
Bogni, A, Pui, CH, Relling, MV. MLL methylation is not likely a common mechanism for therapy-related AML. Leukemia 2005;19:1291–1292.CrossRefGoogle Scholar
Betti, CJ, Villalobos, MJ, Diaz, MO, Vaughan, AT. Apoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair system. Cancer Res 2001;61:4550–4555.Google ScholarPubMed
Sim, SP, Liu, LF. Nucleolytic cleavage of the mixed lineage leukemia breakpoint cluster region during apoptosis. J Biol Chem 2001;276:31590–31595.CrossRefGoogle ScholarPubMed
Betti, CJ, Villalobos, MJ, Diaz, MO, Vaughan, AT. Apoptotic stimuli initiate MLL-AF9 translocations that are transcribed in cells capable of division. Cancer Res 2003;63:1377–1381.Google ScholarPubMed
Stanulla, M, Wang, J, Chervinsky, DS, Thandla, S, Aplan, PD. DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol Cell Biol 1997;17:4070–4079.CrossRefGoogle Scholar
Ng, A, Taylor, GM, Wynn, RF, Eden, OB. Effects of topoisomerase 2 inhibitors on the MLL gene in children receiving chemotherapy: a prospective study. Leukemia 2005;19:253–259.CrossRefGoogle ScholarPubMed
Schichman, SA, Caligiuri, MA, Strout, MP, et al. ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res 1994;54:4277–4280.Google ScholarPubMed
Gu, Y, Cimino, G, Alder, H, et al. The (4;11)(q21;q23) chromosome translocations in acute leukemias involve the VDJ recombinase. Proc Natl Acad Sci USA 1992;89:10464–10468.CrossRefGoogle ScholarPubMed
Smith, MA, Rubinstein, L, Ungerleider, RS. Therapy-related acute myeloid leukemia following treatment with epipodophyllotoxins: estimating the risks. Med Pediatr Oncol 1994;23:86–98.CrossRefGoogle ScholarPubMed
Felix, CA, Hosler, MR, Winick, NJ, et al. ALL-1 gene rearrangements in DNA topoisomerase II inhibitor-related leukemia in children. Blood 1995;85:3250–3256.Google ScholarPubMed
Pui, CH, Relling, MV, Rivera, GK, et al. Epipodophyllotoxin-related acute myeloid leukemia: a study of 35 cases. Leukemia 1995;9:1990–1996.Google ScholarPubMed
Hunger, SP, Tkachuk, DC, Amylon, MD, et al. HRX involvement in de novo and secondary leukemias with diverse chromosome 11q23 abnormalities. Blood 1993;81:3197–3203.Google ScholarPubMed
Felix, CA. Secondary myelodysplasia/acute myeloid leukemia. In Young, NS, Gerson, SL, High, KA (eds.) Clinical Hematology. Philadelphia, PA:Elsevier, 2006: 374–388.Google Scholar
Detourmignies, L, Castaigne, S, Stoppa, AM, et al. Therapy-related acute promyelocytic leukemia: a report on 16 cases. J Clin Oncol 1992;10:1430–1435.CrossRefGoogle ScholarPubMed
Rowe, JM. Therapy of secondary leukemia. Leukemia 2002;16:748–750.CrossRefGoogle ScholarPubMed
Negrin, RS, Stein, R, Doherty, K, et al. Maintenance treatment of the anemia of myelodysplastic syndromes with recombinant human granulocyte colony-stimulating factor and erythropoietin: evidence for in vivo synergy. Blood 1996;87:4076–4081.Google ScholarPubMed
Leahey, AM, Friedman, DL, Bunin, NJ. Bone marrow transplantation in pediatric patients with therapy-related myelodysplasia and leukemia. Bone Marrow Transplant 1999;23:21–25.CrossRefGoogle ScholarPubMed
Gustafson, SA, Lin, P, Chen, SS, et al. Therapy-related acute myeloid leukemia with t(8;21) (q22;q22) shares many features with de novo acute myeloid leukemia with t(8;21)(q22;q22) but does not have a favorable outcome. Am J Clin Pathol 2009;131:647–655.CrossRefGoogle Scholar
Hale, GA, Heslop, HE, Bowman, LC, et al. Bone marrow transplantation for therapy-induced acute myeloid leukemia in children with previous lymphoid malignancies. Bone Marrow Transplant 1999;24:735–739.CrossRefGoogle ScholarPubMed
Geller, RB, Vogelsang, GB, Wingard, JR, et al. Successful marrow transplantation for acute myelocytic leukemia following therapy for Hodgkin's disease. J Clin Oncol 1988;6:1558–1561.CrossRefGoogle ScholarPubMed
Witherspoon, RP, Deeg, HJ, Storer, B, et al. Hematopoietic stem-cell transplantation for treatment-related leukemia or myelodysplasia. J Clin Oncol 2001;19:2134–2141.CrossRefGoogle ScholarPubMed
Yakoub-Agha, I, de La Salmoniere, P, Ribaud, P, et al. Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French Society of Bone Marrow Transplantation. J Clin Oncol 2000;18:963–971.CrossRefGoogle ScholarPubMed
Arnold, R, de Witte, T, van Biezen, A, et al. Unrelated bone marrow transplantation in patients with myelodysplastic syndromes and secondary acute myeloid leukemia: an EBMT survey. European Blood and Marrow Transplantation Group. Bone Marrow Transplant 1998;21:1213–1216.CrossRefGoogle ScholarPubMed
Ostgard, LS, Kjeldsen, E, Holm, MS, et al. Reasons for treating secondary AML as de novo AML. Eur J Haematol 2010;85:217–226.CrossRefGoogle ScholarPubMed
Kosmider, O, Gelsi-Boyer, V, Cheok, M, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 2009;114:3285–3291.CrossRefGoogle Scholar
Kardos, G, Baumann, I, Passmore, SJ, et al. Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood 2003;102:1997–2003.CrossRefGoogle ScholarPubMed
Mantadakis, E, Shannon, KM, Singer, DA, et al. Transient monosomy 7: a case series in children and review of the literature. Cancer 1999;85:2655–2661.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Leung, EW, Woodman, RC, Roland, B, et al. Transient myelodysplastic syndrome associated with isochromosome 7q abnormality. Pediatr Hematol Oncol 2003;20:539–545.CrossRefGoogle ScholarPubMed
Laver, JH, Yusuf, U, Cantu, ES, et al. Transient therapy-related myelodysplastic syndrome associated with monosomy 7 and 11q23 translocation. Leukemia 1997;11:448–450.CrossRefGoogle ScholarPubMed
Leung, W, Campana, D, Yang, J, et al. High success of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood 2011;118:223–230.CrossRefGoogle ScholarPubMed
de Botton, S, Coiteux, V, Chevret, S, et al. Outcome of childhood acute promyelocytic leukemia with all-trans-retinoic acid and chemotherapy. J Clin Oncol 2004;22:1404–1412.CrossRefGoogle ScholarPubMed
Testi, AM, Biondi, A, Lo-Coco, F, et al. GIMEMA–AIEOPAIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood 2005;106:447–453.CrossRefGoogle ScholarPubMed
Quezada, G, Kopp, L, Estey, E, Wells, RJ. All-trans-retinoic acid and arsenic trioxide as initial therapy for acute promyelocytic leukemia. Pediatr Blood Cancer 2008;51:133–135.CrossRefGoogle ScholarPubMed
Bullinger, L, Dohner, K, Bair, E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004;350:1605–1616.CrossRefGoogle ScholarPubMed
Valk, PJ, Verhaak, RG, Beijen, MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004;350:1617–1628.CrossRefGoogle ScholarPubMed
Balgobind, BV, Zwaan, CM, Pieters, R, van den Heuvel-Eibrink, MM. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 2011.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Raimondi, SC, Tong, X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 2002;20:2302–2309.CrossRefGoogle Scholar
Balgobind, BV, Raimondi, SC, Harbott, J, et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009;114:2489–2496.CrossRefGoogle ScholarPubMed
Fung, HC, Cohen, S, Rodriguez, R, et al. Reduced-intensity allogeneic stem cell transplantation for patients whose prior autologous stem cell transplantation for hematologic malignancy failed. Biol Blood Marrow Transplant 2003;9:649–656.CrossRefGoogle ScholarPubMed
Taussig, DC, Davies, AJ, Cavenagh, JD, et al. Durable remissions of myelodysplastic syndrome and acute myeloid leukemia after reduced-intensity allografting. J Clin Oncol 2003;21:3060–3065.CrossRefGoogle ScholarPubMed
Hasle, H, Kerndrup, G, Yssing, M, et al. Intensive chemotherapy in childhood myelodysplastic syndrome. A comparison with results in acute myeloid leukemia. Leukemia 1996;10:1269–1273.Google ScholarPubMed
Anargyrou, K, Vaiopoulos, G, Terpos, E, et al. Low dose melphalan is a treatment option in elderly patients with high risk myelodysplastic syndrome or secondary acute myeloblastic leukaemia. Haematologia (Budap) 2002;32:169–173.CrossRefGoogle ScholarPubMed
Ballen, KK, Antin, JH. Treatment of therapy-related acute myelogenous leukemia and myelodysplastic syndromes. Hematol Oncol Clin North Am 1993;7:477–493.CrossRefGoogle ScholarPubMed
Stasi, R, Brunetti, M, Terzoli, E, Amadori, S. Sustained response to recombinant human erythropoietin and intermittent all-trans retinoic acid in patients with myelodysplastic syndromes. Blood 2002;99:1578–1584.CrossRefGoogle ScholarPubMed
List, A, Beran, M, DiPersio, J, et al. Opportunities for Trisenox (arsenic trioxide) in the treatment of myelodysplastic syndromes. Leukemia 2003;17:1499–1507.CrossRefGoogle ScholarPubMed
List, A. Lenalidomide: a transforming therapeutic agent in myelodysplastic syndromes. Clin Lymphoma Myeloma 2009;9(Suppl 3):S302–S304.CrossRefGoogle ScholarPubMed
Kantarjian, H, Issa, JP, Rosenfeld, CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 2006;106:1794–1803.CrossRefGoogle ScholarPubMed
Tonelli, R, Sartini, R, Fronza, R, et al. G1 cell-cycle arrest and apoptosis by histone deacetylase inhibition in MLL–AF9 acute myeloid leukemia cells is p21 dependent and MLL–AF9 independent. Leukemia 2006;20:1307–1310.CrossRefGoogle ScholarPubMed
Brown, PA, Felix, CA. Targeted therapies for infant ALL. In Houghton, PJ, Arceci, RJ (eds.) Targeted Therapy for Pediatric Cancer. New York: Springer Science, 2010:31–58.Google Scholar
Faber, J, Krivtsov, AV, Stubbs, MC, et al. HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 2009;113:2375–2385.CrossRefGoogle ScholarPubMed
Erfurth, F, Hemenway, CS, de Erkenez, AC, Domer, PH. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia 2004;18:92–102.CrossRefGoogle ScholarPubMed
Srinivasan, RS, Nesbit, JB, Marrero, L, et al. The synthetic peptide PFWT disrupts AF4–AF9 protein complexes and induces apoptosis in t(4;11) leukemia cells. Leukemia 2004;18:1364–1372.CrossRefGoogle Scholar
Chang, MJ, Wu, H, Achille, NJ, et al. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res 2010;70:10234–10242.CrossRefGoogle ScholarPubMed
Bernt, KM, Zhu, N, Sinha, AU, et al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 2011;20:66–78.CrossRefGoogle ScholarPubMed
Daigle, SR, Olhava, EJ, Therkelsen, CA, et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011;20:53–65.CrossRefGoogle ScholarPubMed
Niitsu, N, Hayashi, Y, Honma, Y. Downregulation of MLL-CBP fusion gene expression is associated with differentiation of SN-1 cells with t(11;16)(q23;p13). Oncogene 2001;20:375–384.CrossRefGoogle Scholar
Niitsu, N, Hayashi, Y, Sugita, K, Honma, Y. Sensitization by 5-aza-2′-deoxycytidine of leukaemia cells with MLL abnormalities to induction of differentiation by all-trans retinoic acid and 1α,25-dihydroxyvitamin D3. Br J Haematol 2001;112:315–326.CrossRefGoogle ScholarPubMed
Gewirtz, AM, Sokol, DL, Ratajczak, MZ. Nucleic acid therapeutics: state of the art and future prospects. Blood 1998;92:712–736.Google ScholarPubMed
Schimmer, AD, Brandwein, J, O'Brien, SM, et al. A phase I trial of the small molecule pan-Bcl-2 family inhibitor obatoclax mesylate (GX15–070) administered by continuous infusion for up to four days to patients with hematological malignancies. Blood 2007;110:892a.Google Scholar
Duque-Afonso, J, Yalcin, A, Berg, T, et al. The HDAC class I-specific inhibitor entinostat (MS-275) effectively relieves epigenetic silencing of the LAT2 gene mediated by AML1/ETO. Oncogene 2011;30:3062–3072.CrossRefGoogle ScholarPubMed
Chen, GQ, Shi, XG, Tang, W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 1997;89:3345–3353.Google ScholarPubMed
Estey, E, Garcia-Manero, G, Ferrajoli, A, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006;107:3469–3473.CrossRefGoogle ScholarPubMed
Goldman, JM, Melo, JV. Chronic myeloid leukemia: advances in biology and new approaches to treatment. N Engl J Med 2003;349:1451–1464.CrossRefGoogle Scholar
Scheuring, UJ, Pfeifer, H, Wassmann, B, et al. Early minimal residual disease (MRD) analysis during treatment of Philadelphia chromosome/Bcr-Abl-positive acute lymphoblastic leukemia with the Abl-tyrosine kinase inhibitor imatinib (STI571). Blood 2003;101:85–90.CrossRefGoogle Scholar
Ottmann, OG, Druker, BJ, Sawyers, CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002;100:1965–1971.CrossRefGoogle ScholarPubMed
Burke, MJ, Willert, J, Desai, S, Kadota, R. The treatment of pediatric Philadelphia positive (Ph+) leukemias in the imatinib era. Pediatr Blood Cancer 2009;53:992–995.CrossRefGoogle ScholarPubMed
Kolb, EA, Pan, Q, Ladanyi, M, Steinherz, PG. Imatinib mesylate in Philadelphia chromosome-positive leukemia of childhood. Cancer 2003;98:2643–2650.CrossRefGoogle ScholarPubMed
Luck, SC, Russ, AC, Du, J, et al. KIT mutations confer a distinct gene expression signature in core binding factor leukaemia. Br J Haematol 2010;148:925–937.CrossRefGoogle Scholar
Kindler, T, Breitenbuecher, F, Marx, A, et al. Sustained complete hematologic remission after administration of the tyrosine kinase inhibitor imatinib mesylate in a patient with refractory, secondary AML. Blood 2003;101:2960–2962.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×