Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T09:10:31.854Z Has data issue: false hasContentIssue false

9 - Matchings

Published online by Cambridge University Press:  05 June 2012

Lap Chi Lau
Affiliation:
The Chinese University of Hong Kong
R. Ravi
Affiliation:
Carnegie Mellon University, Pennsylvania
Mohit Singh
Affiliation:
McGill University, Montréal
Get access

Summary

Given a weighted undirected graph, the maximum matching problem is to find a matching with maximum total weight. In his seminal paper, Edmonds [35] described an integral polytope for the matching problem, and the famous Blossom Algorithm for solving the problem in polynomial time.

In this chapter, we will show the integrality of the formulation given by Edmonds [35] using the iterative method. The argument will involve applying uncrossing in an involved manner and hence we provide a detailed proof. Then, using the local ratio method, we will show how to extend the iterative method to obtain approximation algorithms for the hypergraph matching problem, a generalization of the matching problem to hypergraphs.

Graph matching

Matchings in bipartite graphs are considerably simpler than matchings in general graphs; indeed, the linear programming relaxation considered in Chapter 3 for the bipartite matching problem is not integral when applied to general graphs. See Figure 9.1 for a simple example.

Linear programming relaxation

Given an undirected graph G = (V, E) with a weight function w: E → ℛ on the edges, the linear programming relaxation for the maximum matching problem due to Edmonds is given by the following LPM(G). Recall that E(S) denotes the set of edges with both endpoints in SV and x(F) is a shorthand for ∑eFxe for FE.

Although there are exponentially many inequalities in LPM(G), there is an efficient separation oracle for this linear program, obtained by Padberg and Rao using Gomory-Hu trees.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Matchings
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Matchings
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Matchings
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.010
Available formats
×