Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-08T16:16:41.706Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 June 2012

Lap Chi Lau
Affiliation:
The Chinese University of Hong Kong
R. Ravi
Affiliation:
Carnegie Mellon University, Pennsylvania
Mohit Singh
Affiliation:
McGill University, Montréal
Get access

Summary

In this first chapter we motivate our method via the assignment problem. Through this problem, we highlight the basic ingredients and ideas of the method. We then give an outline of how a typical chapter in the rest of the book is structured, and how the remaining chapters are organized.

The assignment problem

Consider the classical assignment problem: Given a bipartite graph G = (V1V2, E) with |V1| = |V2| and weight function w: E → ℝ+, the objective is to match every vertex in V1 with a distinct vertex in V2 to minimize the total weight (cost) of the matching. This is also called the minimum weight bipartite perfect matching problem in the literature and is a fundamental problem in combinatorial optimization. See Figure 1.1 for an example of a perfect matching in a bipartite graph.

One approach to the assignment problem is to model it as a linear programming problem. A linear program is a mathematical formulation of the problem with a system of linear constraints that can contain both equalities and inequalities, and also a linear objective function that is to be maximized or minimized. In the assignment problem, we associate a variable xuv for every {u, v}E. Ideally, we would like the variables to take one of two values, zero or one (hence in the ideal case, they are binary variables). When xuv is set to one, we intend the model to signal that this pair is matched; when xuv is set to zero, we intend the model to signal that this pair is not matched.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Lap Chi Lau, The Chinese University of Hong Kong, R. Ravi, Carnegie Mellon University, Pennsylvania, Mohit Singh, McGill University, Montréal
  • Book: Iterative Methods in Combinatorial Optimization
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977152.002
Available formats
×