Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-28T19:01:14.536Z Has data issue: false hasContentIssue false

14 - Atmospheric transport and deposition of reactive nitrogen in Europe

from Part III - Nitrogen flows and fate at multiple spatial scales

Published online by Cambridge University Press:  16 May 2011

David Simpson
Affiliation:
Norwegian Meteorological Institute
Wenche Aas
Affiliation:
NILU, Norwegian Institute for Air Research
Jerzy Bartnicki
Affiliation:
Norwegian Meteorological Institute
Haldis Berge
Affiliation:
Norwegian Meteorological Institute
Albert Bleeker
Affiliation:
Energy Research Centre of the Netherlands
Frank Dentener
Affiliation:
European Commission Joint Research Centre
Tony Dore
Affiliation:
Centre for Ecology and Hydrology
Jan Willem Erisman
Affiliation:
Energy Research Centre of the Netherlands
Hilde Fagerli
Affiliation:
Norwegian Meteorological Institute
Chris Flechard
Affiliation:
Soils, Agro-hydro systems and Spatialization
Ole Hertel
Affiliation:
University of Aarhus
Hans van Jaarsveld
Affiliation:
Netherlands Environmental Assessment Agency
Mike Jenkin
Affiliation:
Atmospheric Chemistry Services
Martijn Schaap
Affiliation:
TNO Built Environment and Geosciences
Valiyaveetil Shamsudheen Semeena
Affiliation:
Norwegian Meteorological Institute
Philippe Thunis
Affiliation:
European Commission Joint Research Centre
Robert Vautard
Affiliation:
LSCE/IPSL laboratoire CEA/CNRS/VSQ
Massimo Vieno
Affiliation:
University of Edinburgh
Mark A. Sutton
Affiliation:
NERC Centre for Ecology and Hydrology, UK
Clare M. Howard
Affiliation:
NERC Centre for Ecology and Hydrology, UK
Jan Willem Erisman
Affiliation:
Vrije Universiteit, Amsterdam
Gilles Billen
Affiliation:
CNRS and University of Paris VI
Albert Bleeker
Affiliation:
Energy Research Centre of the Netherlands
Peringe Grennfelt
Affiliation:
Swedish Environmental Research Institute (IVL)
Hans van Grinsven
Affiliation:
PBL Netherlands Environmental Assessment Agency
Bruna Grizzetti
Affiliation:
European Commission Joint Research Centre
Get access

Summary

Executive summary

Nature of the problem

  • Observations of atmospheric reactive nitrogen (Nr) deposition are severely restricted in spatial extent and type. The chain of processes leading to atmospheric deposition emissions, atmospheric dispersion, chemical transformation and eventual loss from the atmosphere is extremely complex and therefore currently, observations can only address part of this chain.

Approaches

  • Modelling provides a way of estimating atmospheric transport and deposition of Nr at the European scale. A description of the different model types is provided.

  • Current deposition estimates from models are compared with observations from European air chemistry monitoring networks.

  • The main focus of the chapter is at the European scale; however, both local variability and and intercontinental Nr transfers are also addressed.

Key findings/state of knowledge

  • Atmospheric deposition is a major input of Nr for European terrestrial and freshwater ecosystems as well as coastal sea areas.

  • Models are key tools to integrate our understanding of atmospheric chemistry and transport, and are essential for estimating the spatial distribution of deposition, and to support the formulation of air pollution control strategies.

  • Our knowledge of the reliability of models for deposition estimates is, however, limited, since we have so few observational constraints on many key parameters.

  • Total Nr deposition estimates cannot be directly assessed because of a lack of measurements, especially of the Nr dry deposition component. Differences among European regional models can be significant, however, e.g. 30% in some areas, and substantially more than this for specific locations.

Type
Chapter
Information
The European Nitrogen Assessment
Sources, Effects and Policy Perspectives
, pp. 298 - 316
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, W. and Hjellbrekke, A.-G. (2005). Data Quality 2003: Quality Assurance and Field Comparisons. EMEP/CCC Report 6/2005, The Norwegian Institute for Air Research (NILU), Kjeller, Norway.
Asman, W. (1998). Factors influencing local dry deposition of gases with special reference to ammonia. Atmos. Environ., 32, 415–421.CrossRefGoogle Scholar
Asman, W., Drukker, B. and Janssen, A. (1998). Modeled historical concentrations and depositions of ammonia and ammonium in Europe. Atmos. Environ., 22, 725–735.CrossRefGoogle Scholar
Barrie, L. (1992). Scavenging ratios: black magic or a useful scientific tool? In: Proc. of 5th Int. Conf. on Precipitation Scavenging and Atmosphere–Surface Exchange Processes, ed. S. Schwartz and W. Slinn, vol. 1, the Georgii volume; Precipitation scavenging processes, pp. 403–420, Hemisphere Publ. Corp., Washington, DC.
Bartnicki, J. and Fagerli, H. (2008). Airborne load of nitrogen to European seas. Ecol. Chem. Eng. S, 15, 297–313.Google Scholar
Beer, R., Shephard, M. W., Kulawik, S. S.et al. (2008). First satellite observations of lower tropospheric ammonia and methanol. Geophys. Res. Lett., 35.CrossRefGoogle Scholar
Berge, E. and Jakobsen, H. A. (1998). A regional scale multi-layer model for the calculation of long-term transport and deposition of air pollution in Europe. Tellus, 50, 205–223.CrossRefGoogle Scholar
Berge, H. and Hjellbrekke, A.-G. (2010). Acidifying and Eutrophying Components: Validation and Combined Maps, supplementary material to emep status report 1/2010, available online at www. emep. int, The Norwegian Meteorological Institute, Oslo, Norway.
Bessagnet, B., Hodzic, A., Vautard, R.et al. (2004). Aerosol modeling with CHIMERE – preliminary evaluation at the continental scale. Atmos. Environ., 38, 2803–2817.CrossRefGoogle Scholar
Binkowski, F. and Roselle, S. (2003). Models-3 community multiscale air quality (CMAQ) model aerosol component – 1. Model description. J. Geophys. Res., 108.CrossRefGoogle Scholar
Bleeker, A., Reinds, G., Vermeulen, A., Vries, W. and Erisman, J. (2004). Critical Loads and Present Deposition Thresholds of Nitrogen and Acidity and Their Exceedances at the Level II and Level I Monitoring Plots in Europe, ECN Report ECN-C-04–117, Energy Research Centre of the Netherlands (ECN).
Bleeker, A., Sutton, M., Acherman, B.et al. (2009). Linking ammonia emission trends to measured concentrations and deposition of reduced nitrogen at different scales. In: Atmospheric Ammonia. Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 123–180, Springer, New York.CrossRefGoogle Scholar
Blond, N., Boersma, K. F., Eskes, H. J.et al. (2007). Intercomparison of SCIAMACHY nitrogen dioxide observations, in situ measurements and air quality modeling results over Western Europe. J. Geophys. Res., 112, D10 311.CrossRefGoogle Scholar
Boersma, K., Eskes, H., Veefkind, J.et al. (2007). Near-real time retrieval of tropospheric NO2 from OMI. Atmos. Chem. Phys. 7, 2103–2118.CrossRef
Bovensmann, H., Burrows, J. P., Buchwitz, M.et al. (1999). SCIAMACHY – mission objectives and measurement modes. J. Atmos. Sci., 56, 127–150.2.0.CO;2>CrossRefGoogle Scholar
Brown, S., Ryerson, T., Wollny, A.et al. (2006). Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science, 311, 67–70.CrossRefGoogle ScholarPubMed
Burrows, J. P., Weber, M., Buchwitz, M.et al. (1999). The Global Ozone Monitoring Experiment (GOME) – mission concept and first scientific results, J. Atmos. Sci., 56, 151–175.2.0.CO;2>CrossRefGoogle Scholar
Cape, J., Kirika, A., Rowland, A.et al. (2001). Organic nitrogen in precipitation – real problem or sampling artefact?Scientif. World, 1, 230–237.CrossRefGoogle ScholarPubMed
Carmichael, G., Peters, L. and Saylor, R. (1991). The STEM-II regional scale acid deposition and photochemical oxidant model. 1. Overview of model development and applications. J. Geophys. Res., 25, 2077–2090.Google Scholar
Carruthers, D., Holroy, D.et al. (1994). UK-ADMS – a new approach to modeling dispersion in the Earth's atmospheric boundary layer. J. Wind Eng. Industr. Aerodynam., 52, 139–153.CrossRefGoogle Scholar
Chang, J., Brost, A., Isaksen, I.et al. (1987). A three-dimensional Eulerian acid deposition model – physical concepts and formulation. J. Geophys. Res., 92, 14681–14700.CrossRefGoogle Scholar
Cimorelli, A. J., Perry, S. G., Venkatram, A.et al. (2005). AERMOD: a dispersion model for industrial source applications. 1: General model formulation and boundary layer characterization. J. Appl. Meteorol., 44, 682–693.CrossRefGoogle Scholar
Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D. and Coheur, P.-F. (2009). Global ammonia distribution derived from infrared satellite observations. Nature Geosci., 2, 479–483.CrossRefGoogle Scholar
Clarke, J., Edgerton, E. and Martin, B. (1997). Dry deposition calculations for the clean air status and trends network. Atmos. Environ., 31, 3667–3678.CrossRefGoogle Scholar
Cofala, J., Amann, M., Kupiainen, K. and Hoglund-Isaksson, L. (2007). Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos. Env., 41, 8486–8499.CrossRefGoogle Scholar
Collins, W., Stevenson, D., Johnson, C. and Derwent, R. (1997). Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls. J. Atmos. Chem., 26, 223–274.CrossRefGoogle Scholar
Leeuw, G., Cohen, L.Frohn, L.et al. (2001). Atmospheric input of nitrogen into the North Sea – ANICE project overview. Cont. Shelf Res., 21, 2073–2094.CrossRefGoogle Scholar
Leeuw, G., Skjoth, C, Hertel, O.et al. (2003). Deposition of nitrogen into the North Sea. Atmos. Environ., 37, S145–S165.CrossRefGoogle Scholar
Delle Monache, L. and Stull, R. (2003). An ensemble air-quality forecast over western Europe during an ozone episode. Atmos. Environ., 37, 3469–3474.CrossRefGoogle Scholar
Dentener, F., Drevet, J., Lamarque, J. F.et al. (2006). Nitrogen and sulfur deposition on regional and global scales – a multimodel evaluation. Glob. Biogeochem. Cycles, 20.CrossRefGoogle Scholar
Dore, A., Choularton, T. and Fowler, D. (1992). An improved wet deposition map of the United Kingdom incorporating the seeder-feeder effect over mountanous terrain. Atmos. Environ., 26A, 1375–1381.CrossRefGoogle Scholar
Draaijers, G. and Erisman, J. (1993). Atmospheric sulfur deposition to forest stands – Through-fall estimates compared to estimates from inference. Atmos. Environ., 27A, 43–55.CrossRefGoogle Scholar
Duyzer, J., Nijenhuis, B. and Weststrate, H. (2001). Monitoring and modelling of ammonia consequences deposition in agricultural areas of the Netherlands. Water, Air and Soil Pollut. Focus, 1, 131–144.CrossRefGoogle Scholar
,EDGAR (2010). v.4, http://edgar.jre.ec.europa.eu
,EIONET (2010). http://air-climate.eionet.europa.eu/databases/MDS/index_html
,EMEP (1996). EMEP Manual for Sampling and Chemical Analysis, EMEP/CCC-Report 1995, last revision in 2001. Norwegian Institute for Air Research, Kjeller, Norway. Online at http://www.nilu.no/proj ects/ccc/manual/index.html
,EMEP http://ebas.nilu.no (2010). www.emep.int
,EPA (US Environmental Protection Agency) (2010). www.epa.gov/scram001/aqmindex. htm
Erisman, J., Draaijers, G., Duyzer, J.et al. (1997). Particle deposition to forests – summary of results and application. Atmos. Environ., 31, 321–322.CrossRefGoogle Scholar
Erisman, J. W., Hensen, A., Fowler, D.et al. (2001). Dry Deposition monitoring in Europe, Water, Air Soil Pollut. Focus, 1, 17–27.CrossRefGoogle Scholar
Erisman, J., Vermeulen, A., Hensen, A.et al. (2005). Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe. Environ. Pollut., 403–413.CrossRefGoogle Scholar
Erisman, J., Grinsven, H., Grizzetti, B.et al. (2011). The European nitrogen problem in a global perspective. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.Google Scholar
Fagerli, H. and Aas, W. (2008). Trends of nitrogen in air and precipitation: model results and observations at EMEP sites in Europe, 1980–2003. Environ. Pollut., 154, 448–461.CrossRefGoogle Scholar
Fagerli, H. and Hjellbrekke, A. (2008). Acidification and eutrophication. In: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006, EMEP Status Report 1/2008, pp. 41–56, The Norwegian Meteorological Institute, Oslo, Norway.
Fagerli, H., Wind, P., Gauss, M.et al. (2008). Improved resolution in EMEP models. In: Transboundary Acidification, Eutrophication and Ground Level Ozone in Europe in 2006, EMEP Status Report 1/2008, pp. 89–104, The Norwegian Meteorological Institute, Oslo, Norway.
Fish, D., Shallcross, D. and Jones, R. (1999). The vertical distribution of NO3 in the atmospheric boundary layer. Atmos. Environ., 33, 687–691.CrossRefGoogle Scholar
Flechard, C. R., Fowler, D., Sutton, M. A. and Cape, J. N. (1999). A dynamic chemical model of bi-directional ammonia exchange between semi-natural vegetation and the atmosphere. Q. J. R. Meteorol. Soc, 125, 2611–2641.CrossRefGoogle Scholar
Fournier, N., Tang, Y., Dragosits, U., Kluizenaar, Y. and Sutton, M. (2005). Regional atmospheric budgets of reduced nitrogen over the British Isles assessed using a multi-layer atmospheric transport model. Water, Air Soil Pollut., 162, 331–351.CrossRefGoogle Scholar
Fowler, D., Cape, J., Leith, I.et al. (1988). The influence of altitude on rainfall composition at Great Dun Fell. Atmos. Environ., 22, 1355–1362.CrossRefGoogle Scholar
Fowler, D., Pitcairn, C. E. R., Sutton, M. A.et al. (1998). The mass budget of atmospheric ammonia in woodland within 1 km of livestock buildings. Environ. Pollut., 102, 343–348.CrossRefGoogle Scholar
Fowler, D., Coyle, M., Flechard, C.et al. (2001). Advances in micrometeorological methods for the measurement and interpretation of gas and particle nitrogen fluxes. Plant and Soil, 228, 117–129.CrossRefGoogle Scholar
Fowler, D., Pilegaard, K., Sutton, M.et al. (2009). Atmospheric composition change – ecosystems–atmosphere interactions. Atmos. Environ., 43, 5193–5267.CrossRefGoogle Scholar
Frohn, L. M., Christensen, J. H., Brandt, J. and Hertel, O. (2001). Development of a high resolution integrated nested model for studying air pollution in Denmark. Phys. Chem. Earth, B, 26, 769–774.CrossRefGoogle Scholar
Gallagher, M. W., Nemitz, E., Dorsey, J. R.et al. (2002). Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest – influence of surface roughness length on deposition, J. Geophys. Res., 107.CrossRefGoogle Scholar
Galloway, J., Dentener, F., Capone, D.et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
Galmarini, S., Bianconi, R., Addis, R.et al. (2004). Ensemble dispersion forecasting. 2. Application and evaluation. Atmos. Environ., 38, 4619–4632.CrossRefGoogle Scholar
Gonzalez Benitez, J. M., Cape, J. N., Heal, M. R., Dijk, N. and Diez, A. V. (2009). Atmospheric nitrogen deposition in south-east Scotland – quantification of the organic nitrogen fraction in wet, dry and bulk deposition. Atmos. Environ., 43, 4087–4094.CrossRefGoogle Scholar
Gonzalez Benitez, J. M., Cape, J. N. and Heal, M. R. (2010). Gaseous and particulate water-soluble organic and inorganic nitrogen in rural air in southern Scotland. Atmos. Environ., 44, 1506–1514.CrossRefGoogle Scholar
,HELCOM (2005). Airborne Nitrogen Loads to the Baltic Sea, Helsinki Commission.
Hertel, O., Christensen, J., Runge, E.et al. (1995). Development and testing of a new variable scale air-pollution model – ACDEP. Atmos. Environ., 29, 1267–1290.CrossRefGoogle Scholar
Hertel, O., Ambelas Skjoth, C., Frohn, L. M.et al. (2002). Assessment of the atmospheric nitrogen and sulphur inputs into the North Sea using a Lagrangian model. Phys. Chem. Earth, B, 27, 1507–1515.CrossRefGoogle Scholar
Hertel, O., Skjoth, C., Brandt, J.et al. (2003). Operational mapping of atmospheric nitrogen deposition to the Baltic Sea. Atmos. Chem. Phys., 3, 2083–2099.CrossRefGoogle Scholar
Hertel, O., Skjoth, C. A., Lofstrom, P.et al. (2006). Modelling nitrogen deposition on a local scale – a review of the current state of the art. Environ. Chem., 3, 317–337.CrossRefGoogle Scholar
Hertel, O., Reis, S., Ambelas Skjoth, C.et al. (2011). Nitrogen processes in the atmosphere. In: The European Nitrogen Assessment, ed. Sutton, M. A., Howard, C. M., Erisman, J. W.et al., Cambridge University Press.Google Scholar
Holmes, N. and Morawska, L. (2006). A review of dispersion modelling and its application to the dispersion of particles – an overview of different dispersion models available. Atmos. Environ., 40, 5902–5928.CrossRefGoogle Scholar
,HTAP (UNECE Hemispheric Task Force on Atmospheric Pollutants) (2010). www. htap.org
,IPCC (2007). Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the International Panel on Climate Change, www.ipcc.ch.
Jenkin, M. E., Saunders, S. M., Wagner, V. and Pilling, M. J. (2003). Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds. Atmos. Chem. Phys., 3, 181–193.CrossRefGoogle Scholar
Jenkin, M., Utembe, S. and Johnson, D. (2006). The simulated speciation and distribution of oxidized organic nitrogen in the atmospheric boundary layer. In: Understanding and Quantifying the Atmospheric Nitrogen Cycle, ed. Cox, R., Fowler, D., Monks, P. and Borrell, P., pp. 130–136, ACCENT, Keele University, UK.Google Scholar
Johnson, D., Utembe, S. R. and Jenkin, M. E. (2006). Simulating the detailed chemical composition of secondary organic aerosol formed on a regional scale during the TORCH 2003 campaign in the southern UK. Atmos. Chem. Phys., 6, 419–431.CrossRefGoogle Scholar
Kessler, C., Brucher, W., Memmesheimer, M., Kerschgens, M. and Ebel, A. (2001). Simulation of air pollution with nested models in North Rhine-Westphalia. Atmos. Environ., 35, S3–S12.CrossRefGoogle Scholar
Konovalov, I., Beekmann, M., Vautard, R.et al. (2005). Comparison and evaluation of modelled and GOME measurement derived tropospheric NO2 columns over Western and Eastern Europe. Atmos. Chem. Phys., 5, 169–190.CrossRefGoogle Scholar
Konovalov, I. B., Beekmann, M., Richter, A. and Burrows, J. P. (2006). Inverse modelling of the spatial distribution of NOx emissions on a continental scale using satellite data. Atmos. Chem. and Phys., 6, 1747–1770.CrossRefGoogle Scholar
Konovalov, I. B., Beekmann, M., Burrows, J. P. and Richter, A. (2008). Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions. Atmos. Chem. Phys., 8, 2623–2641.CrossRefGoogle Scholar
Korhonen, H., Lehtinen, K. E. J. and Kulmala, M. (2004). Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos. Chem. Phys., 4, 757–771.CrossRefGoogle Scholar
Laj, P., Klausen, J., Bilde, M.et al. (2009). Measuring atmospheric composition change. Atmos. Environ., 43, 5351–5414.CrossRefGoogle Scholar
Langner, J., Andersson, C. and Engardt, M. (2009). Atmospheric input of nitrogen to the Baltic sea basin – present situation, variability due to meteorology and impact of climate change. Boreal Environ. Res., 14, 226–237.Google Scholar
Leue, C., Wenig, M., Wagner, T.et al. (2001). Quantitative analysis of NOx emissions from GOME satellite image sequences. J. Geophys. Res., 106, 5493–5505.CrossRefGoogle Scholar
Loubet, B. and Cellier, P. (2001). Experimental assessment of atmospheric ammonia dispersion and short range dry deposition in a maize canopy. Water, Air and Soil Pollution: Focus, 1, 157–166.CrossRef
Loubet, B., Cellier, P., Milford, C. and Sutton, M. A. (2006). A coupled dispersion and exchange model for short-range dry deposition of atmospheric ammonia. Quarterly Journal of the Royal Meteorological Society, 132, 1733–1763.CrossRef
Loubet, B., Asman, W. A., Theobald, M. R.et al. (2009). Ammonia deposition near hot spots: processes, models and monitoring methods. In: Atmospheric Ammonia. Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 205–267, Springer, New York.Google Scholar
Ma, J., Richter, A., Burrows, J. P., Nuss, H. and Aardenne, J. A. (2006). Comparison of model-simulated tropospheric NO2 over China with GOME-satellite data. Atmos. Environ., 40, 593–604.CrossRefGoogle Scholar
Martin, R V., Jacob, D. J., Chance, K. V.et al. (2003). Global inventory of nitrogen dioxide emissions constrained by space-based observations of NO2 columns. J. Geophys. Res., 108, 4537.CrossRefGoogle Scholar
McKeen, S., Chung, S. H., Wilczak, J.et al. (2007). Evaluation of several PM2.5 forecast models using data collected during the ICARTT/NEAQS 2004 field study. J. Geophys. Res., 112.CrossRefGoogle Scholar
Monks, P., Granier, C., Fuzzi, S.et al. (2009). Atmospheric composition change – global and regional air quality. Atmos. Environ., 43, 5268–5350.CrossRefGoogle Scholar
Olesen, H., Lofstrem, P., Berkowicz, R. and Jensen, A. (1992). An improved dispersion model for regulatory use – the OML model. In: Air Pollution Modelling and its Application IX, ed. Dop, H. and Kallos, G., Plenum Press, New York.Google Scholar
Olesen, H. R. (1995). The model validation exercise at M01: overview of results. Int. J. Environ. Pollut. 5, 761.
Pagowski, M., Grell, G., McKeen, S.et al. (2005). A simple method to improve ensemble-based ozone forecasts. Geophys. Res. Lett., 32.CrossRefGoogle Scholar
Pilegaard, K., Skiba, U., Ambus, P.et al. (2005). Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences, 3, 651–661.CrossRefGoogle Scholar
Pryor, S. C., Barthelmie, R. J., Sorensen, L. L.et al. (2008a). Upward fluxes of particles over forests – when, where, why?Tellus, 60, 372–380.CrossRefGoogle Scholar
Pryor, S. C., Gallagher, M., Sievering, H.et al. (2008b). A review of measurement and modelling results of particle atmosphere–surface exchange. Tellus, 60, 42–75.CrossRefGoogle Scholar
Pryor, S. C., Larsen, S. E., Sorensen, L. L. and Barthelmie, R. J. (2008c). Particle fluxes above forests: Observations, methodological considerations and method comparisons. Environ. Pollut., 152, 667–678.CrossRefGoogle ScholarPubMed
Rannik, U., Aalto, P., Keronen, P., Vesala, T. and Kulmala, M. (2003). Interpretation of aerosol particle fluxes over pine forest – dry deposition and random errors. J. Geophys. Res., 108, 4544.CrossRefGoogle Scholar
Reis, S., Pinder, R. W., Zhang, M., Lijie, G. and Sutton, M. A. (2009). Reactive nitrogen in atmospheric emission inventories. Atmos. Chem. Phys., 9, 7657–7677.CrossRefGoogle Scholar
Rendell, A. R., Ottley, C. J., Jickells, T. D. and Harrison, R. M. (1993). The atmospheric input of nitrogen species to the North Sea. Tellus B, 45, 53–63.CrossRefGoogle Scholar
Riccio, A., Giunta, G. and Galmarini, S. (2007). Seeking for the rational basis of the Median Model: the optimal combination of multi-model ensemble results. Atmos. Chem. Phys., 7, 6085–6098.CrossRefGoogle Scholar
Richter, A., Burrows, J. P., Nuß, H., Granier, C. and Niemeier, U. (2005). Increase in tropospheric nitrogen dioxide over China observed from space. Nature, 437, 129–132.CrossRefGoogle ScholarPubMed
Robertson, L., Langner, J. and Engardt, M. (1999). An Eulerian limited-area atmospheric transport model. J. Appl. Meteorol., 38, 190–210.2.0.CO;2>CrossRefGoogle Scholar
Roelofs, G., Kasibhatla, P., Barrie, L.et al. (2001). Analysis of regional budgets of sulfur species modeled for the COSAM exercise. Tellus, 53B, 673–694.Google Scholar
Ruijgrok, W., Tieben, H. and Eisinga, P. (1997). The dry deposition of particles to forest canopy – a comparison of model and experimental results. Atmos. Environ., 31, 399–415.CrossRefGoogle Scholar
Sanderson, M., Dentener, R, Fiore, A.et al. (2008). A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophys. Res. Lett., 35, L17 815, doi:10.1029/2008GL035389.CrossRefGoogle Scholar
Schaap, M., Timmermans, R. M. A., Roemer, M.et al. (2008). The LOTOS-EUROS model: description, validation and latest developments. Int. J. Environ. Pollut., 32, 270–290.CrossRefGoogle Scholar
Schaap, M., Vautard, R., Bergstrom, R.et al. (2010). Evaluation of long-term aerosol simulations from seven air quality models and their ensemble in the EURODELTA study (submitted).
Schlunzen, K. H. and Meyer, E. M. I. (2007). Impacts of meteorological situations and chemical reactions on daily dry deposition of nitrogen into the southern North Sea. Atmos. Environ., 41, 289–302.CrossRefGoogle Scholar
Seibert, P., Beyrich, F., Gryning, S.-E.et al. (2000). Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ., 34, 1001–1027.CrossRefGoogle Scholar
Seinfeld, J. and Pandis, S. (1998). Atmospheric Chemistry and Physics. From Air Pollution to Climate Change, John Wiley and Sons, New York.Google Scholar
Simpson, D., Tuovinen, J.-P., Emberson, L. and Ashmore, M. (2001). Characteristics of an ozone deposition module. Water, Air Soil Pollut. Focus, 1, 253–262.CrossRefGoogle Scholar
Simpson, D., Fagerli, H., Jonson, J.et al. (2003). The EMEP Unified Eulerian Model – Model Description, EMEP MSC-W Report 1/2003, The Norwegian Meteorological Institute, Oslo, Norway.Google Scholar
Simpson, D., Butterbach-Bahl, K., Fagerli, H.et al. (2006a). Deposition and emissions of reactive nitrogen over European forests: a modelling study. Atmos. Environ., 40, 5712–5726.CrossRefGoogle Scholar
Simpson, D., Fagerli, H., Hellsten, S., Knulst, J., and Westling, O. (2006b). Comparison of modelled and monitored deposition fluxes of sulphur and nitrogen to ICP-forest sites in Europe. Bio-geosciences, 3, 337–355.Google Scholar
Singles, R., Sutton, M. and Weston, K. (1998). A multi-layer model to describe the atmospheric transport and deposition of ammonia in Great Britain. Atmos. Environ., 32, 393–399.CrossRefGoogle Scholar
Sliggers, S. and Kakebeeke, W. (eds.) (2004). Clearing the Air: 25 Years of the Convention on Long-Range Transboundary Air Pollution, United Nations, Economic Commission for Europe, Geneva, http://www.unece.org/env/lrtap
Smith, R., Fowler, D., Sutton, M. A., Flechard, C. and Coyle, M. (2000). Regional estimation of pollutant gas dry deposition in the UK – model description, sensitivity analyses and outputs. Atmos. Environ., 34, 3757–3777.CrossRefGoogle Scholar
Sommer, S. G., and Jensen, E. S. (1991). Foliar absorption of atmospheric ammonia by ryegrass in the field. Journal of Environmental Quality, 20, 153–156.CrossRef
Sportisse, B. (2007). A review of current issues in air pollution modeling and simulation. Comp. Geosci., 11, 159–181.CrossRefGoogle Scholar
Stern, R., Builtjes, P., Schaap, M.et al. (2008). A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmos. Environ., 42, 4567–4588.CrossRefGoogle Scholar
Sutton, M., Nemitz, E., Erisman, J.et al. (2007). Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environ. Poll., 150, 125–139.CrossRefGoogle ScholarPubMed
Sutton, M. A., Milford, C., Dragosits, U.et al. (1998). Dispersion, deposition and impacts of atmospheric ammonia – quantifying local budgets and spatial variability. Environ. Pollut., 102, 349–361.CrossRefGoogle Scholar
Tang, Y., Simmons, I., Dijk, N.et al. (2009). European scale application of atmospheric reactive nitrogen measurements in a low-cost approach to infer dry deposition fluxes. Agricult., Ecosyst. Environ. 133, 183–195.CrossRefGoogle Scholar
Theobald, M. R., Millford, C., Hargreaves, K. J.et al. (2001). Potential for ammonia recapture by farm woodlands: design and application of a new experimental facility. 1(S2), 791–801.CrossRef
Textor, C., Schulz, M., Guibert, S.et al. (2006). Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6, 1777–1813.CrossRefGoogle Scholar
,UNECE (2009). EMEP Draft revised monitoring strategy, http://www.unece.org/env/ documents/2009/EB/ge1/ece.eb.air.ge.1.2009.15.e.pdf
,UKNAEI (UK National Emission inventory) (2010). www. uknaei.org. uk
Aardenne, J. A., Dentener, F. J., Olivier, J. G. J., Goldewijk, C. G. M. K. and Lelieveld, J. (2001). A 1 degrees × 1 degrees resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Glob. Biogeochem. Cycles, 15, 909–928.CrossRefGoogle Scholar
A, R. J. M., Peters, D. H. M. U., Eskes, H.et al. (2006). Detection of the trend and seasonal variation in tropospheric NO2 over ChinaJ. Geophys. Res., 111, D12317.Google Scholar
Jaarsveld, J. A. (2004). The Operational Priority Substances Model – Description and Validation of OPS-Pro 4.1, RIVM Report 500045001/2004, RIVM, Bilthoven, The Netherlands.
Loon, M., Roemer, M. and Builtjes, P. (2004). Model Intercomparison in the Framework of the Review of the Unified EMEP Model, TNO-report R2004/282, TNO, TNO Environment and Geosciences, Utrecht, The Netherlands, http://www.tno.nl/content.cfm? context=markten&content=publicatie&laagl=186&laag2=l&item_ id=737&Taal=2
Loon, M., Vautard, R., Schaap, M.et al. (2007). Evaluation of long-term ozone simulations from seven regional air quality models and their ensemble. Atmos. Environ., 41, 2083–2097.CrossRefGoogle Scholar
Pul, A., Jaarsveld, H. V., Meulen, T. v. d. and Velders, G. (2004). Ammonia concentrations in the Netherlands – spatially detailed measurements and model calculations. Atmos. Environ., 38, 4045–4055.CrossRefGoogle Scholar
Pul, A., Hertel, O., Geels, C.et al. (2009). Modelling of the atmospheric transport and deposition of ammonia at a national and regional scale. In: Atmospheric Ammonia: Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 301–358, Springer, New York.Google Scholar
Vautard, R., Builtjes, P., Thunis, P.et al. (2007). Evaluation and intercomparison of ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmos. Environ., 41, 173–188.CrossRefGoogle Scholar
Vautard, R., Schaap, M., Bergstrom, R.et al. (2008). Skill and uncertainty of a regional air quality model ensemble. Atmos. Environ. 43, 4822–4832.CrossRefGoogle Scholar
Vieno, M., Dore, A. J., Wind, P.et al. (2009). Application of the EMEP Unified Model to the UK with a horizontal resolution of 5 × 5 km2. In: Atmospheric Ammonia. Detecting Emissions Changes and Environmental Impacts, ed. Sutton, M. A., Reis, S. and Baker, S. M., pp. 367–372, Springer, New York.Google Scholar
Vieno, M., Dore, A. J., Stevenson, D. S.et al. 2010 Modelling surface ozone during the 2003 heat wave in the UK. Atmospheric Chemistry and Physics, 110, 7963–7978.CrossRefGoogle Scholar
Wayne, R., Barnes, I., Biggs, P.et al. (1991). The nitrate radical: physics, chemistry, and the atmosphere. Atmos. Environ. 25A, 1–203.CrossRefGoogle Scholar
Zhang, L., Gong, S., Padro, J. and Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ., 35, 549–560.CrossRefGoogle Scholar
Zhang, L., Vet, R., O'Brien, J. M.et al. (2009). Dry deposition of individual nitrogen species at eight Canadian rural sites. J. Geophys. Res., 114, D02301.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×