Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-16T09:16:35.039Z Has data issue: false hasContentIssue false

32 - Host–Pathogen Interactions

from Part II - Cell Death in Tissues and Organs

Published online by Cambridge University Press:  07 September 2011

Douglas R. Green
Affiliation:
St. Jude Children's Research Hospital, Memphis, Tennessee
Maya Saleh
Affiliation:
McGill University
John C. Reed
Affiliation:
Sanford-Burnham Medical Research Institute, La Jolla, California
Get access

Summary

Introduction

In this chapter, I address the fundamental questions of what differentiates pathogens from commensal microorganisms and how pathogens succeed in causing infectious disease. I delve in more detail into host mechanisms evolved to detect the presence of invaders and to fight infections. I focus on the role of innate immunity, production of antimicrobial peptides, inflammation, and cell death in the host–pathogen battle and discuss the remarkable conservation of innate immunity between plants, invertebrates, and mammals, despite having evolved under selective pressure imposed by distinct pathogens.

Type
Chapter
Information
Apoptosis
Physiology and Pathology
, pp. 372 - 388
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gal-Mor, O. and Finlay, B. B.. Pathogenicity islands: a molecular toolbox for bacterial virulence. Cell Microbiol 8 (11), 1707–1719 (2006).
Celli, J., Deng, W., and Finlay, B. B.. Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside. Cell Microbiol 2 (1), 1–9 (2000).
Raetz, C. R. and Whitfield, C.. Lipopolysaccharide endotoxins. Ann Rev Biochem 71, 635–700 (2002).
Shimazu, R., Akashi, S., Ogata, H. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189 (11), 1777–1782 (1999).
Miller, S. I., Ernst, R. K., and Bader, M. W.. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol 3 (1), 36–46 (2005).
Moran, A. P., Lindner, B., and Walsh, E. J.. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J Bacteriol 179 (20), 6453–6463 (1997).
Andersen-Nissen, E., Smith, K. D., Strobe, K. L. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 102 (26), 9247–9252 (2005).
Hayashi, F., Smith, K. D., Ozinsky, A. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410 (6832), 1099–1103 (2001).
Smith, K. D., Andersen-Nissen, E., Hayashi, F. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nature Immunol 4 (12), 1247–1253 (2003).
Roy, C. R.. Exploitation of the endoplasmic reticulum by bacterial pathogens. Trends Microbiol 10 (9), 418–424 (2002).
Finlay, B. B. and Falkow, S.. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61 (2), 136–169 (1997).
Janeway, C. A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 1989;54 Pt 1:1–13.
Oppenheim, J. J. and Yang, D.. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 17 (4), 359–365 (2005).
Wilson, C. L., Ouellette, A. J., Satchell, D. P. et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science (New York) 286 (5437), 113–117 (1999).
Ghosh, D., Porter, E., Shen, B. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3 (6), 583–590 (2002).
Moser, C., Weiner, D. J., Lysenko, E. et al. beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infection Immunity 70 (6), 3068–3072 (2002).
Salzman, N. H., Ghosh, D., Huttner, K. M. et al. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422 (6931), 522–526 (2003).
Wehkamp, J., Salzman, N. H., Porter, E. et al. Reduced Paneth cell alpha-defensins in ileal Crohn's disease. Proc Natl Acad Sci U S A 102 (50), 18129–18134 (2005).
Fellermann, K., Stange, D. E., Schaeffeler, E. et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet 79 (3), 439–448 (2006).
Kim, C., Gajendran, N., Mittrucker, H. W. et al. Human alpha-defensins neutralize anthrax lethal toxin and protect against its fatal consequences. Proc Natl Acad Sci U S A 102 (13), 4830–4835 (2005).
Nizet, V., Ohtake, T., Lauth, X. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414 (6862), 454–457 (2001).
Scott, M. G., Dullaghan, E., Mookherjee, N. et al. An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25 (4), 465–472 (2007).
Lemaitre, B. and Hoffmann, J.. The host defense of Drosophila melanogaster. Ann Rev Immunol 25, 697–743 (2007).
Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388 (6640), 394–397 (1997).
Bowie, A. and O’Neill, L. A.. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukocyte Biol 67 (4), 508–514 (2000).
Akira, S., Uematsu, S., and Takeuchi, O.. Pathogen recognition and innate immunity. Cell 124 (4), 783–801 (2006).
Poltorak, A., He, X., Smirnova, I. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science (New York) 282 (5396), 2085–2088 (1998).
Alexopoulou, L., Holt, A. C., Medzhitov, R. et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413 (6857), 732–738 (2001).
Hemmi, H., Takeuchi, O., Kawai, T. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408 (6813), 740–745 (2000).
Kawai, T. and Akira, S.. TLR signaling. Cell Death Differ 13 (5), 816–825 (2006).
Takeda, K., Kaisho, T., and Akira, S.. Toll-like receptors. Ann Rev Immunol 21, 335–376 (2003).
DeYoung, B. J. and Innes, R. W.. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7 (12), 1243–1249 (2006).
Mayor, A., Martinon, F., De, T. Smedt et al. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 8 (5), 497–503 (2007).
Bertin, J., Nir, W. J., Fischer, C. M. et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J Biol Chem 274 (19), 12955–12958 (1999);
Girardin, S. E., Boneca, I. G., Carneiro, L. A. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science (New York) 300 (5625), 1584–1587 (2003).
Colonna, M.. All roads lead to CARD9. Nat Immunol 8 (6), 554–555 (2007).
Bertrand, M. J., Doiron, K.Labbé, K., et al. Cellular inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the pattern recognition receptors NOD1 and NOD2. Immunity 2009;30(6):789–801.
LeBlanc, P., Yeretssian, G., Rutherford, N., et al. Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe 3 (3) 146–157 (2008).
Petrilli, V., Dostert, C., Muruve, D. A. et al. The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 19 (6), 615–622 (2007).
Mariathasan, S. and Monack, D. M.. Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7, 31–40 (2007).
Dinarello, C. A.. Biologic basis for interleukin-1 in disease. Blood 87 (6), 2095–2147 (1996).
Faustin, B., Lartigue, L., Bruey, J. M. et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Molecular Cell 25 (5), 713–724 (2007).
Mariathasan, S., Newton, K., Monack, D. M. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430 (6996), 213–218 (2004).
Martinon, F., Burns, K., and Tschopp, J.. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10 (2), 417–426 (2002).
Wang, S., Miura, M., Jung, Y. K. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92 (4), 501–509 (1998).
Mueller, N. J., Wilkinson, R. A., and Fishman, J. A.. Listeria monocytogenes infection in caspase-11-deficient mice. Infection Immunity 70 (5), 2657–2664 (2002).
Saleh, M., Mathison, J. C., Wolinski, M. K. et al. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440, 1064–1068 (2006).
Fernandes-Alnemri, T., Wu, J., JYu, W., et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14, 1590–1604 (2007).
Zamboni, D. S., Kobayashi, K. S., Kohlsdorf, T. et al. The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7 (3), 318–325 (2006).
Sutterwala, F. S., Mijares, L. A., Li, L. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204 (13), 3235–3245 (2007).
Franchi, L., Stoolman, J., Kanneganti, T. D. et al. Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37 (11), 3030–3039 (2007).
Schnupf, P. and Portnoy, D. A.. Listeriolysin O: a phagosome-specific lysin. Microbes and Infection / Institut Pasteur 9 (10), 1176–1187 (2007).
Wu, J, Fernandes-Alnemri, T, Alnemri, ES. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol 2010;30(5):693–702.
Hersh, D., Monack, D. M., Smith, M. R. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci U S A 96 (5), 2396–2401 (1999).
Miao, E. A., Alpuche-Aranda, C. M., Dors, M. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7 (6), 569–575 (2006).
Miao, E. A., Ernst, R. K., Dors, M. et al. Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci U S A 105 (7), 2562–2567 (2008).
Viala, J., Chaput, C., Boneca, I. G. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5 (11), 1166–1174 (2004).
Kanneganti, T. D., Lamkanfi, M., Kim, Y. G. et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26 (4), 433–443 (2007).
Marina-Garcia, N., Franchi, L., Kim, Y. G. et al. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via Cryopyrin/NLRP3 independently of Nod2. J Immunol 180 (6), 4050–4057 (2008).
Khakh, B. S. and North, R. A.. P2X receptors as cell-surface ATP sensors in health and disease. Nature 442 (7102), 527–532 (2006).
Pelegrin, S. P. and Surprenant, A.. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25 (21), 5071–5082 (2006).
Gurcel, L., Abrami, L., Girardin, S. et al. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126 (6), 1135–1145 (2006).
Walev, I., Klein, J., Husmann, M. et al. Potassium regulates IL-1 beta processing via calcium-independent phospholipase A2. J Immunol 164 (10), 5120–5124 (2000).
Petrilli, V., Papin, S., Dostert, C. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium. Cell Death Differ 14 (9),1583–1589 (2007).
Feldmeyer, L., Keller, M., Niklaus, G. et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17 (13), 1140–1145 (2007).
Dostert, C., Petrilli, V., Van Bruggen, R. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science (New York) 320 (5876), 674–677 (2008).
Kanneganti, T. D., Ozoren, N., Body-Malapel, M. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440 (7081), 233–236 (2006).
Martinon, F., Petrilli, V., Mayor, A. et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440 (7081), 237–241 (2006).
Muruve, D. A., Petrilli, V., Zaiss, A. K. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452 (7183), 103–107 (2008).
Cruz, C. M., Rinna, A., Forman, H. J. et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282 (5), 2871–2879 (2007).
Hanna, P. C., Acosta, D., and Collier, R. J.. On the role of macrophages in anthrax. Proc Natl Acad Sci U S A 90 (21), 10198–10201 (1993).
Kato, S., Muro, M., Akifusa, S. et al. Evidence for apoptosis of murine macrophages by Actinobacillus actinomycetemcomitans infection. Infection Immunity 63 (10), 3914–3919 (1995).
Morimoto, H. and Bonavida, B.. Diphtheria toxin- and Pseudomonas A toxin-mediated apoptosis. ADP ribosylation of elongation factor-2 is required for DNA fragmentation and cell lysis and synergy with tumor necrosis factor-alpha. J Immunol 149 (6), 2089–2094 (1992).
Khelef, N., Zychlinsky, A., and Guiso, N.. Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infection Immunity 61 (10), 4064–4071 (1993).
Keller, M., Ruegg, A., Werner, S. et al. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132 (5), 818–831 (2008).
O’Sullivan, M. P., O’Leary, S., Kelly, D. M. et al. A caspase-independent pathway mediates macrophage cell death in response to Mycobacterium tuberculosis infection. Infection Immunity 75 (4), 1984–1993 (2007).
Lee, J., Remold, H. G., Ieong, M. H. et al. Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J Immunol 176 (7), 4267–4274 (2006).
Suzuki, T., Franchi, L., Toma, C. et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathogens 3 (8), e111 (2007).
Willingham, S. B., Bergstralh, D. T., O’Connor, W. et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2 (3), 147–159 (2007).
Levine, B. and Deretic, V.. Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7 (10), 767–777 (2007).
Gutierrez, M. G., Master, S. S., Singh, S. B. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119 (6), 753–766 (2004).
Nakagawa, I., Amano, A., Mizushima, N. et al. Autophagy defends cells against invading group A Streptococcus. Science (New York) 306 (5698), 1037–1040 (2004).
Checroun, C., Wehrly, T. D., Fischer, E. R. et al. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc Natl Acad Sci U S A 103 (39), 14578–14583 (2006).
Jackson, W. T., Giddings, T. H., Jr., Taylor, M. P. et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3 (5), e156 (2005).
Stoven, S., Silverman, N., Junell, A. et al. Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc Natl Acad Sci U S A 100 (10), 5991–5996 (2003).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×