Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T09:18:40.446Z Has data issue: false hasContentIssue false

24 - Therapeutic Targeting Apoptosis in Female Reproductive Biology

from Part II - Cell Death in Tissues and Organs

Published online by Cambridge University Press:  07 September 2011

Douglas R. Green
Affiliation:
St. Jude Children's Research Hospital, Memphis, Tennessee
Kaisa Selesniemi
Affiliation:
Harvard Medical School
Jonathan L. Tilly
Affiliation:
Harvard Medical School
John C. Reed
Affiliation:
Sanford-Burnham Medical Research Institute, La Jolla, California
Get access

Summary

Introduction

The ovaries are major endocrine organs in females that, in mammals, serve two principal functions: (1) to produce a female germ cell (oocyte) that is capable of fertilization and successful embryonic development, yielding a viable, healthy offspring; and (2) to secrete a number of hormones that drive development of primary and secondary sex characteristics in the female and, during adulthood, prepare the uterus for establishment and maintenance of pregnancy. These functions are carried out by structures termed follicles, which are often referred to as the functional units of the ovaries. Each follicle is composed of an oocyte that is surrounded by one or more layers of somatic granulosa cells and, at more advanced stages of follicle development, theca cells. The granulosa and theca cells are responsible for much of the ovarian hormone production and support the maturation and growth of the enclosed oocyte. There are several different types of follicles present in the ovaries, which, depending on the size of the oocyte as well as the number of granulosa and theca cell layers, are classified as primordial (resting oocyte surrounded by a single layer of quiescent granulosa cells), primary (the first stage of immature follicles activated to initiate growth, characterized by oocyte enlargement and granulosa cell mitotic activity), secondary or preantral (larger maturing follicles with several layers of mitotically active granulosa cells, as well as some theca cells), and antral (mature follicles that have a fluid-filled cavity called an antrum and the ability to be ovulated in response to the pituitary gonadotropin, luteinizing hormone). The growth and maturation of a primordial follicle to the antral stage capable of ovulation can take weeks to months, depending on species, during which time the majority of follicles actually fail to mature and are eliminated by a degenerative process involving apoptosis that is referred to as atresia.

Type
Chapter
Information
Apoptosis
Physiology and Pathology
, pp. 273 - 282
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Oktem, O., and Oktay, K. (2008). The ovary: anatomy and function throughout human life. Ann N Y Acad Sci. 1127, 1–9.
Gougeon, A. (2004). Dynamics of human follicular growth: morphologic, dynamic and functional aspects. In: The Ovary, Leung, P. C. K. and Adashi, E. Y. (eds.). San Diego: Elsevier Academic Press; pp. 25–43.
Hirshfield, A. N. (1991). Development of follicles in the mammalian ovary. Int Rev Cytol. 124, 43–101.
Gougeon, A. (1986). Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod. 1, 81–7.
Tilly, J. L. (1993). Ovarian follicular atresia: a model to study the mechanisms of physiological cell death. Endocr J. 1, 67–72.
Tilly, J. L. (1996). Apoptosis and ovarian function. Rev Reprod. 1, 162–72.
Morita, Y., and Tilly, J. L. (1999). Oocyte apoptosis: like sand through an hourglass. Dev Biol. 213, 1–17.
Tilly, J. L. (2001). Commuting the death sentence: how oocytes strive to survive. Nat Rev Mol Cell Biol. 2, 838–48.
Tilly, J. L., Pru, J. K., and Rueda, B. R. (2004). Apoptosis in ovarian development, function and failure. In: The Ovary, Leung, P. C. K. and Adashi, E. Y. (eds.). San Diego: Elsevier Academic Press; pp. 321–52.
Byskov, A. G. (1986). Differentiation of the mammalian embryonic gonad. Physiol Rev. 66, 71–117.
Pinkerton, J. H. M., McKay, D. G., Adams, E. C., and Hertig, T. A. (1961). Development of the human ovary: a study using histochemical techniques. Obstet Gynecol. 18, 152–81.
Baker, T. G. (1963). A quantitative and cytological study of germ cells in human ovaries. Proc R Soc London (B). 158, 417–33.
Forabosco, A., Sforza, C., De Pol, A., Vizzotto, L., Marzona, L., and Ferrario, V. F. (1991). Morphometric study of the human neonatal ovary. Anat Rec. 231, 201–8.
Pesce, M., and De Felici, M. (1994). Apoptosis in mouse primordial germ cells: a study by transmission and scanning electron microscope. Anat Embryol. 189, 435–40.
De Pol, A., Vaccina, F., Forabosco, A., Cavazzuti, E., Marzona, L. (1997). Apoptosis of germ cells during human prenatal oogenesis. Hum Reprod. 12, 2235–41.
Manabe, N., Inoue, N., Miyano, T., Sakamaki, K., Sugimoto, M., and Miyamoto, H. (2004). Follicle selection in mammalian ovaries: regulatory mechanisms of granulosa cell apoptosis during follicular atresia. In: The Ovary, Leung, P. C. K. and Adashi, E. Y. (eds.). San Diego: Elsevier Academic Press; pp. 369–85.
Richardson, S. J., Senikas, V., and Nelson, J. F. (1987). Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab. 65, 1231–7.
Flemming, W. (1885). Über die bildung von richtungsfiguren in säugethiereiern beim untergang Graaf'scher follikel. Arch Anat Entwickelungsgeschichte (Arch Anat Physiol). 221–44.
Kerr, J. F. R., Wyllie, A. H., and Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26, 239–57.
Tilly, J. L., Kowalski, K. I., Johnson, A. L., and Hsueh, A. J. W. (1991). Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology. 129, 2799–801.
Hughes, F. M., and Gorospe, W. C. (1991). Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology. 129, 2415–22.
Coucouvanis, E. C., Sherwood, S. W., Carswell-Crumpton, C., Spack, E. G., and Jones, P. P. (1993). Evidence that the mechanism of prenatal germ cell death in the mouse is apoptosis. Exp Cell Res. 209, 238–47.
Pru, J. K., and Tilly, J. L. (2001). Programmed cell death in the ovary: insights and future prospects using genetic technologies. Mol Endocrinol. 15, 845–53.
Buckler, H. (2005). The menopause transition: endocrine changes and clinical symptoms. J Br Menopause Soc. 11, 61–5.
Klein, J., and Sauer, M. V. (2001). Assessing fertility in women of advanced reproductive age. Am J Obstet Gynecol. 185, 758–70.
Navot, D., Bergh, P. A., Williams, M. A., Garrisi, G. J., Guzman, I., Sandler, B., and Grunfeld, L. (1991). Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet. 337, 1375–7.
Ventura, S. J. (1989). Trends and variations in first births to older women, United States, 1970–86. Vital Health Stat. 47, 1–27.
Ventura, S. J., Abma, J. C., Mosher, W. D., and Henshaw, S. (2004). Estimated pregnancy rates for the United States, 1990–2000: an update. Natl Vital Stat . 52, 1–9.
Perez, G. I., Robles, R., Knudson, C. M., Flaws, J. A., Korsmeyer, S. J., and Tilly, J. L. (1999). Prolongation of ovarian lifespan into advanced chronological age by Bax-deficiency. Nat Genet. 21, 200–3.
Meirow, D., and Nugent, D. (2001). The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 7, 535–43.
Tilly, J. L. (2004). Pharmacological protection of female fertility. In: Preservation of Fertility, Tulandi, T. and Gosden, R. G. (eds.). London: Taylor & Francis: pp. 65–75.
Salooja, N., Reddy, N., and Apperley, J. (2004). Vulnerability of the reproductive system to radiotherapy and chemotherapy. In: Preservation of Fertility, Tulandi, T. and Gosden, R. G. (eds.). London: Taylor & Francis; pp. 39–64.
Sharara, F. I., Beatse, S. N., Leonardi, M. R., Navot, D., and Scott, R. T. Jr (1994). Cigarette smoking accelerates the development of diminished ovarian reserve as evidence by the clomiphene citrate challenge test. Fertil Steril. 62, 257–62.
Freour, T., Masson, D., Mirallie, S., Jean, M., Bach, K., Dejoie, T., and Barriere, P. (2008). Active smoking compromises IVF outcome and affects ovarian reserve. Reprod Biomed Online. 16, 96–102.
Bishop, J. B., Morris, R. W., Seely, J. C., Hughes, L. A., Cain, K. T., and Generoso, W. M. (1997). Alterations in the reproductive patterns of female mice exposed to xenobiotics. Fundam Appl Toxicol. 40, 191–204.
Perez, G. I., Knudson, C. M., Leykin, L., Korsmeyer, S. J., and Tilly, J.L. (1997). Apoptosis-associated signaling pathways are required for chemotherapy-mediated female germ cell destruction. Nat Med. 3, 1228–32.
Bergeron, L., Perez, G. I., Macdonald, G., Shi, L., Sun, Y., Jurisicova, A., Varmuza, S., Latham, K. E., Flaws, J. A., Salter, J. C., Hara, H., Moskowitz, M. A., Li, E., Greenberg, A., Tilly, J. L., and Yuan, J. (1998). Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12, 1304–14.
Morita, Y., Perez, G. I., Maravei, D. V., Tilly, K. I., and Tilly, J. L. (1999). Targeted expression of Bcl-2 in mouse oocytes inhibits ovarian follicle atresia and prevents spontaneous and chemotherapy-induced oocyte apoptosis in vitro. Mol Endocrinol. 13, 841–50.
Morita, Y., Perez, G. I., Paris, F., Miranda, S. R., Ehleiter, D., Haimovitz-Friedman, A., Fuks, Z., Xie, Z., Reed, J. C., Schuchman, E. H., Kolesnick, R. N., and Tilly, J. L. (2000). Oocyte apoptosis is suppressed by disruption of the gene or by sphingosine-1-phosphate therapy. Nat Med. 6, 1109–14.
Matikainen, T., Perez, G. I., Jurisicova, A., Schlezinger, J. J., Ryu, H.-Y., Pru, J. K., Sakai, T., Korsmeyer, S. J., Casper, R. F., Sherr, D. H., and Tilly, J. L. (2001). Aromatic hydrocarbon receptor-driven gene expression is required for premature ovarian failure caused by biohazardous environmental chemicals. Nat Genet. 28, 355–60.
Matikainen, T. M., Moriyama, T., Morita, Y., Perez, G. I., Korsmeyer, S. J., Sherr, D. H., and Tilly, JL. (2002). Ligand activation of the aromatic hydrocarbon receptor transcription factor drives Bax-dependent apoptosis in developing fetal ovarian germ cells. Endocrinology. 143, 615–20.
Van Blerkom, J., and Davis, P. W. (1998). DNA strand breaks and phosphatidylserine redistribution in newly ovulated and cultured mouse and human oocytes: occurrence and relationship to apoptosis. Hum Reprod. 13, 1317–24.
Perez, G. I., Tao, X.-J., and Tilly, J. L. (1999). Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol Hum Reprod. 5, 414–20.
Ghafari, F., Gutierre, C. G., and Hartshorne, G. M. (2007). Apoptosis in mouse fetal and neonatal oocytes during meiotic prophase one. BMC Dev Biol. 7, 87.
Reynaud, K., and Driancourt, M. A. (2000). Oocyte attrition. Mol Cell Endocrinol. 163, 101–8.
Matikainen, T., Perez, G. I., Zheng, T. S., Kluzak, T. R., Rueda, B. R., Flavell, R. A., and Tilly, J. L. (2001). Caspase-3 gene knockout defines cell lineage specificity for programmed cell death signaling in the ovary. Endocrinology 142, 2468–80.
Vaskivuo, T. E., Anttonen, M., Herva, R., Billig, H., Dorland, M., te Velde, E. R., Stenbäck, F., Heikinheimo, M., and Tapanainen, J. S. (2001). Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab. 86, 3421–9.
Kim, M. R., and Tilly, J. L. (2004). Current concepts in Bcl-2 family member regulation of female germ cell development and survival. Biochim Biophys Acta. 1644, 205–10.
Takai, Y., Matikainen, T., Jurisicova, A., Kim, M. R., Trbovich, A. M., Fujita, E., Nakagawa, T., Lemmers, B., Flavell, R. A., Hakem, R., Momoi, T., Yuan, J., Tilly, J. L., and Perez, G. I. (2007). Caspase-12 compensates for lack of caspase-2 and caspase-3 in female germ cells. Apoptosis. 12, 791–800.
Krysko, D. V., Diez-Fraile, A., Criel, G., Svistunov, A. A., Vandenabeele, P., and D’Herde, K. (2008). Life and death of female gametes during oogenesis and folliculogenesis. Apoptosis. 13, 1065–87.
Ginsburg, M., Snow, M. H., and McLaren, A. (1990). Primordial germ cells in the mouse embryo during gastrulation. Development. 110, 521–8.
Chiquoine, A. D. (1954). The identification, origin and migration of the primordial germ cells of the mouse embryo. Anal Rec. 118, 135–46.
Anderson, R., Copeland, T., Schöler, H., Heasman, J., and Wylie, C. (2000). The onset of germ cell migration in the mouse embryo. Mech Dev. 91, 61–8.
Molyneaux, K., Stallock, J., Schaible, K., and Wylie, C. (2001). Time-lapse analysis of living germ cell migration. Dev Biol. 240, 488–98.
Stallock, J., Molyneaux, K., Schaible, K., Knudson, C. M., and Wylie, C. (2003). The pro-apoptotic gene Bax is required for the death of ectopic primordial germ cells during their migration in the mouse embryo. Development. 130, 6589–97.
Russell, E. S. (1957). Gene-induced embryological modifications of primordial germ cells in the mouse. J Exp Zool. 134, 207–37.
Godin, I., Deed, R., Cooke, J., Zsebo, K., Dexter, M., and Wylie, C. C. (1991). Effects of the Steel gene product on mouse primordial germ cells in culture. Nature. 352, 807–9.
Pesce, M., Farrace, M. G., Piacentini, M., Dolci, S., and De Felici, M.,(1993). Stem cell factor and leukemia inhibitory factor promote primordial germ cell survival by suppressing programmed cell death (apoptosis). Development. 118, 1089–94.
Runyan, C., Schaible, K., Molyneaux, K., Wang, Z., Levin, L., and Wylie, C. (2006). Steel factor controls midline cell death of primordial germ cells and is essential for their normal proliferation and migration. Development. 133, 861–9.
Morita, Y., Manganaro, T. F., Tao, X. J., Martimbeau, S., Donahoe, P. K., and Tilly, J. L. (1999). Requirement for phosphatidylinositol-3′-kinase in cytokine-mediated germ cell survival during fetal oogenesis in the mouse. Endocrinology. 140, 941–9.
Maravei, D. V., Morita, Y., Kuida, K., and Tilly, J. L. (1999). Pre- and postnatal ovarian apoptosis defects in caspase-9-deficient mice. Mol Biol Cell. 10 (Suppl.), 352.
Morita, Y., Maravei, D. V., Bergeron, L., Wang, S., Perez, G. I., Tsutsumi, O., Taketani, Y., Asano, M., Horai, R., Korsmeyer, S. J., Iwakura, Y., Yuan, J., and Tilly, J. L. (2001). Caspase-2 deficiency rescues female germ cells from death due to cytokine insufficiency but not meiotic defects caused by () gene inactivation. Cell Death Differ. 8, 614–20.
Pepling, M. E., de Cuevas, M., and Spradling, A. C. (1999). Germline cysts: a conserved phase of germ cell development? Trends Cell Biol. 9, 257–62.
Pepling, M. E., and Spradling, A. C. (2001). Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles. Dev Biol. 234, 339–51.
Gougeon, A. (1996). Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev. 17, 121–55.
Knudson, C. M., Tung, K. S., Tourtellotte, W. G., Brown, G. A., Korsmeyer, S. J. (1995). Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science. 270, 96–9.
Gosden, R. G., Laing, S. C., Felicio, L. S., Nelson, J. F., and Finch, C. E. (1983). Imminent oocyte exhaustion and reduced follicular recruitment mark the transition to acyclicity in aging C57BL/6J mice. Biol Reprod. 28, 255–60.
Perez, G. I., Jurisicova, A., Wise, L., Lipina, T., Kanisek, M., Bechard, A., Takai, Y., Hunt, P., Roder, J., Grynpas, M., and Tilly, J. L. (2007). Absence of the proapoptotic Bax protein extends fertility and alleviates age-related health complications in female mice. Proc Natl Acad Sci USA. 104, 5229–34.
Zuckerman, S. (1951). The number of oocytes in the mature ovary. Rec Prog Horm Res. 6, 63–108.
Johnson, J., Canning, J., Kaneko, T., Pru, J. K., and Tilly, J. L. (2004). Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 428, 145–50.
Johnson, J., Bagley, J., Skaznik-Wikiel, M., Lee, H.-J., Adams, G. B., Niikura, Y., Tschudy, K. S., Tilly, J. C., Cortes, M. L., Forkert, R., Spitzer, T., Iacomini, J., Scadden, D. T., Tilly, J. L. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell. 122, 303–15.
Kerr, J. B., Duckett, R., Myers, M., Britt, K. L., Mladenovska, T., and Findlay, J. K. (2006). Quantification of healthy follicles in the neonatal and adult mouse ovary: evidence for maintenance of primordial follicle supply. Reproduction. 132, 95–109.
Lee, H.-J., Selesniemi, K., Niikura, Y., Niikura, T., Klein, R., Dombkowski, D. M., and Tilly, J. L. (2007). Bone marrow transplantation generates immature oocytes and rescues long-term fertility in a preclinical mouse model of chemotherapy-induced premature ovarian failure. J Clin Oncol. 25, 3198–204.
VirantKlun, I., Zech, N., Roman, P., Vogler, A., Cvjetianin, B., Klemenc, P., Maliev, E., and Meden-Vrtovec, H. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 76, 843–56.
VirantKlun, I., Roman, P., Cvjetianin, B., Vrtacnik-Bokal, E., Novakovic, S., Ruelicke, T. (2009). Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally occurring follicles and oocytes. Stem Cells Dev. 18, 137–49.
Selesniemi, K., Lee, H.-J., Niikura, T., and Tilly, J. L. (2009). Young adult donor bone marrow infusions into female mice postpone age-related reproductive failure and improve offspring survival. Aging. 1, 49–57.
Tilly, J. L., and Rueda, B. R. (2008). Minireview: stem cell contribution to ovarian development, function, and disease. Endocrinology. 149, 4307–11.
Tilly, J. L., Niikura, Y., and Rueda, B. R. (2009). The current status of evidence for and against postnatal oogenesis in mammals: a case of ovarian optimism versus pessimism? Biol Reprod. 80, 2–12.
Osborne, T. B., Mendel, L. B., Ferry, E. L. (1917). The effect of retardation of growth upon the breeding period and duration of life of rats. Science. 45, 294–5.
Ball, Z. B., Barnes, R. H., and Visscher, M. B. (1947). The effects of dietary caloric restriction on maturity and senescence, with particular reference to fertility and longevity. Am J Physiol. 150, 511–19.
Masoro, E. J. (2003). Subfield history: caloric restriction, slowing aging, and extending life. Sci Aging Knowledge Environ. 2003, re2.
Selesniemi, K., Lee, H.-J., and Tilly, J. L. (2008). Moderate caloric restriction initiated in rodents during adulthood sustains function of the female reproductive axis into advanced chronological age. Aging Cell. 7, 622–9.
Ingram, D. K., Anson, R. M., de Cabo, R., Mamczarz, J., Zhu, M., Mattison, J., Lane, M. A., and Roth, G. S. (2004). Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci. 1019, 412–23.
Baur, J. A., and Sinclair, D. A. (2006). Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 5, 493–506.
Ingram, D. K., Zhu, M., Mamczarz, J., Zou, S., Lane, M. A., Roth, G. S., de Cabo, R. (2007). Calorie restriction mimetics: an emerging research field. Aging Cell. 5, 97–108.
Austad, S. N. (2007). Vertebrate aging research 2006. Aging Cell. 6, 135–8.
Chen, D., Guarente, L. (2007). SIR2: a potential target for calorie restriction mimetics. Trends Mol Med. 13, 64–71.
Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M. J. (2008). Cancer statistics, 2008. CA Cancer J Clin. 58, 71–96.
Partridge, A. H., Bunnell, C. A., and Winer, E. P. (2001). Quality of life issues among women undergoing high-dose chemotherapy for breast cancer. Breast Dis. 14, 41–50.
Wenzel, L., Dogan-Ates, A., Habbal, R., Berkowitz, R., Goldstein, D. P., Bernstein, M., Kluhsman, B. C., Osann, K., Newlands, E., Seckl, M. J., Hancock, B., and Cella, D. (2005). Defining and measuring reproductive concerns of female cancer survivors. J Natl Cancer Inst Monogr. 34, 94–8.
Oktem, O., and Oktay, K. (2007). Quantitative assessment of the impact of chemotherapy on ovarian follicle reserve and stromal function. Cancer. 110, 2222–9.
Wallace, W. H., Thomson, A. B., and Kelsey, T. W. (2003). Radiosensitivity of the human oocyte. Hum Reprod. 18, 117–21.
Lee, S. J., Schover, L. R., Partridge, A. H., Patrizio, P., Wallace, W. H., Hagerty, K., Beck, L.N., Brennan, L.V., and Oktay, K. (2006). American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol. 24, 2917–31.
Roberts, J. E., Oktay, K. (2005). Fertility preservation: a comprehensive approach to the young woman with cancer. J Natl Cancer Inst Monogr. 34, 57–9.
Scorrano, L., and Korsmeyer, S. J. (2003). Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun. 304, 437–44.
Hannun, Y. A. (1996). Functions of ceramide in coordinating cellular responses to stress. Science. 274, 1855–9.
Cuvillier, O., Pirianov, G., Kleuser, B., Vanek, P. G., Coso, O. A., Gutkind, S., and Spiegel, S. (1996). Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 381, 800–3.
Paris, F., Perez, G. I., Haimovitz-Friedman, A., Nguyen, H., Fuks, Z., Bose, M., Ilagan, A., Hunt, P. A., Morgan, W. F., Tilly, J. L., and Kolesnick, R. (2002). Sphingosine-1-phosphate preserves fertility in irradiated female mice without propagating genomic damage in offspring. Nat Med. 8, 901–2.
Jurisicova, A., Lee, H. J., D’Estaing, S. G., Tilly, J., Perez, G. I. (2006). Molecular requirements for doxorubicin-mediated death in murine oocytes. Cell Death Differ. 13, 1466–74.
Hancke, K., Strauch, O., Kissel, C., Göbel, H., Schäfer, W., and Denschlag, D. (2007). Sphingosine 1-phosphate protects ovaries from chemotherapy-induced damage in vivo. Fertil Steril. 87, 172–7.
Kaya, H., Desdicioglu, R., Sezik, M., Ulukaya, E., Ozkaya, O., Yilmaztepe, A., and Demirci, M. (2008). Does sphingo-sine-1-phosphate have a protective effect on cyclopho-sphamide- and irradiation-induced ovarian damage in the rat model? Fertil Steril. 89, 732–25.
Zelinski, M. B., Murphy, M. K., Lawson, M. S., Jurisicova, A., Pau, K. Y. F., Toscano, N. P., Jacob, D. S., Fanton, J. K., Casper, R. F., Dertinger, S. D., Tilly, J. L. (2011). delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female non-human primates. (released online 10 February 2011).
Reed, J. C. (1998). Bcl-2 family proteins. Oncogene. 17, 3225–36.
Zimmerman, K. C., Bonzon, C., and Green, D. R. (2001). The machinery of programmed cell death. Pharmacol Ther. 92, 57–70.
Danial, N. N., and Korsmeyer, S. J. (2004). Cell death: critical control points. Cell. 116, 205–19.
Jiang, X., and Wang, X. (2004). Cytochrome C-mediated apoptosis. Annu Rev Biochem. 73, 87–106.
Yan, N., and Shi, Y. (2005). Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol. 21, 35–56.
Green, D. R., and Kroemer, G. (2005). Pharmacological manipulation of cell death: clinical applications in sight? Clin Invest. 115, 2610–17.
Reed, J. C. (2006). Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ. 13, 1378–86.
Kim, I., Xu, W., and Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 7, 1013–30.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×