Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T00:08:49.640Z Has data issue: false hasContentIssue false

9 - Nonequilibrium transport and nanodevices

Published online by Cambridge University Press:  05 June 2012

David K. Ferry
Affiliation:
Arizona State University
Stephen M. Goodnick
Affiliation:
Arizona State University
Jonathan Bird
Affiliation:
State University of New York, Buffalo
Get access

Summary

The technological means now exists for approaching the fundamental limiting scales of solid-state electronics in which a single electron can, in principle, represent a single bit in an information flow through a device or circuit. The burgeoning field of single-electron tunneling (SET) effects, although currently operating at very low temperatures, has brought this consideration into the forefront. Indeed, the recent observations of SET effects in poly-Si structures at room temperature by a variety of authors has grabbed the attention of the semiconductor industry. While there remains considerable debate over whether the latter observations are really single-electron effects, the resulting behavior has important implications for future semiconductor electronics, regardless of the final interpretation of the physics involved. Indeed, the semiconductor industry is rapidly carrying out its own advance, with transistor gate lengths in the 20 nm range in production in 2009 (the so-called 35 nm node).

We pointed out in Chapter 1 that the semiconductor industry is following a linear scaling law that is expected to be fairly rigorous. With dimensions approaching 10 nm within another decade, there is a rapid search for possible new technologies that can supplement Si with the offer of improved performance. However, it is clear from a variety of considerations that the devices themselves may well not be the limitation on continued growth in device density within the integrated circuit chip.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhou, J.-R. and Ferry, D. K., IEEE Trans. Electron Dev. 40, 421 (1993).CrossRef
Wong, H. S. and Taur, Y., Proc. Int. Electron Dev. Mtg. (New York, IEEE Press, 1193), p. 705.Google Scholar
Martin, P. C., Schwinger, J., Phys. Rev. 115, 1342 (1959).CrossRef
Schwinger, J., J. Math. Phys. 2, 407 (1961).CrossRef
Kadanoff, L. P. and Baym, G., Quantum Statistical Mechanics (New York, Benjamin, 1962).Google Scholar
Keldysh, L. V., Sov. Phys. JETP 20, 1018 (1965).
Enz, C. P., A Course on Many-Body Theory Applied to Solid-State Physics (Singapore, World Scientific Press, 1992), p. 76.CrossRefGoogle Scholar
Haug, H., in Quantum Transport in Ultrasmall Devices, eds. Ferry, D. K., Grubin, H. L., Jacoboni, C., and Jauho, A.-P. (New York, Plenum Press, 1995).Google Scholar
Kuhn, T. and Rossi, F., Phys. Rev. B 46, 7496 (1992).CrossRef
Haug, H. and Jauho, A.-P., Quantum Kinetics in Transport and Optics of Semiconductors (Berlin, Springer, 2004).Google Scholar
Hickmott, T. W., Solomon, P. M., Fang, F. F., et al., Phys. Rev. Lett. 52, 2053 (1984).CrossRef
Eaves, L., Sheard, F. W., and Toombs, G. A., in Physics of Quantum Electron Devices, ed. Capasso, F. (New York, Springer-Verlag, 1990), pp. 107–46.CrossRefGoogle Scholar
Eaves, L., Guimaraes, P. S. S., Snell, B. R., Taylor, D. C., and Singer, K. E., Phys. Rev. Lett. 53, 262 (1985).CrossRef
Yoo, H., Goodnick, S. M., Arthur, J. R., and Reed, M. A., J. Vac. Sci. Technol. B 8, 370 (1990).CrossRef
Hayes, J. R., Levi, A. F. J., and Wiegmann, W., Electron. Lett. 20, 851 (1984); Phys. Rev. Lett. 54, 1570 (1985).CrossRef
Yokoyama, N., Imamura, K., Ohshima, T., et al., Proc. Int. Electron Dev. Mtg. (New York, IEEE Press, 1984), p. 532.Google Scholar
Heiblum, M., Thomas, D. C., Knoedler, C. M., and Nathan, M. I., Appl. Phys. Lett. 47, 1105 (1985).CrossRef
Levi, A. F. J., Hayes, J. R., Platzmann, P. M., and Wiegmann, W., Phys. Rev. Lett. 55, 2071 (1985).CrossRef
Heiblum, M., Nathan, M. I., Thomas, D. C., and Knoedler, C. M., Phys. Rev. Lett. 55, 2200 (1985).CrossRef
Heiblum, M. and Fischetti, M. V., in Physics of Quantum Electron Devices, ed. Capasso, F. (New York, Springer-Verlag, 1990), pp. 271–318.CrossRefGoogle Scholar
Hollis, M. A., Palmateer, S. C., Eastman, L. F., Dandekar, N. V., and Smith, P. M., Electron. Dev. Lett. 4, 440 (1983).CrossRef
Lam, V. H. Y., Dellow, M. W., Bending, S. J., et al., Semicond. Sci. Technol. 10, 110 (1995).CrossRef
Pavleski, A., Heiblum, M., Umbach, C. P., et al., Phys. Rev. Lett. 62, 1776 (1989).
Pavleski, A., Umbach, C. P., and Heiblum, M., Appl. Phys. Lett. 55, 1421 (1989).
Galloway, T., Gallagher, B. L., Beton, P., et al., Surf. Sci. 229, 326 (1990).CrossRef
Ferry, D. K., Semiconductors (New York, Macmillan, 1991).Google Scholar
Molenkamp, L. W., Houten, H., Beenakker, C. W. J., Eppenga, R., and Foxon, C. T., Phys. Rev. Lett. 65, 1052 (1990).CrossRef
Molenkamp, L. W., Gravier, Th., Houten, H., et al., Phys. Rev. Lett. 68, 3765 (1992).CrossRef
Molenkamp, L. W. and Jong, M. J. M., Sol.-State Electron. 37, 551 (1994).CrossRef
Molenkamp, L. W., Staring, A. A. M., Alphanaar, B. W., Houten, H., and Beenakker, C. W. J., Semicond. Sci. Technol. 9, 903 (1994).CrossRef
Ikoma, T., Hirakawa, K., Hiramoto, T., and Odagiri, T., Sol.-State Electron. 32, 1793 (1989).CrossRef
Hirakawa, H., Odagiri, T., Hiramoto, T., and Ikoma, T., in Proc. Symp. New Phenomena in Mesoscopic Structures, eds. Namba, S. and Hamaguchi, C., December 1989.
Ikoma, T. and Hiramoto, T., in Granular Nanoelectronics, eds. Ferry, D. K., Barker, J. R., and Jacoboni, C. (New York, Plenum Press, 1991), pp. 255–76.CrossRefGoogle Scholar
Hirakawa, K. and Sasaki, H., Appl. Phys. Lett. 49, 889 (1989).CrossRef
Price, P. J., J. Appl. Phys. 53, 6863 (1982).CrossRef
Fletcher, R., Feng, Y., Foxon, C. T., Harris, J. J., Phys. Rev. B 61, 2028 (2000).CrossRef
Prasad, C., Ferry, D. K., Vasileska, D., and Wieder, H. H., Physica E 19, 215 (2003).CrossRef
Ma, Y., Fletcher, R., Zaremba, E., et al., Phys. Rev. B 43, 9033 (1991).CrossRef
Appleyard, N. J., Nicholls, J. T., Simmons, M. Y., Tribe, W. R., Pepper, N., Phys. Rev. Lett. 81, 3491 (1998).CrossRef
Sarma, S. Das, Campos, V. B., Phys. Rev B 47, 3728 (1993).CrossRef
Prasad, C., Ferry, D. K., Vasileska, D., and Wieder, H. H., J. Vac. Sci. Technol. B 21, 1936 (2003).CrossRef
Prasad, C., Ferry, D. K., and Wieder, H. H., J. Vac. Sci. Technol. 22, 2059 (2004).CrossRef
Goodnick, S. M., Wu, J. C., Wybourne, M. N., and Smith, D. D., Phys. Rev. B 48, 9150 (1993).CrossRef
Wu, J. C., Wybourne, M. N., Bervens, C., Goodnick, S. M., and Smith, D. D., Appl. Phys. Lett. 61, 1 (1992).
Shah, J., Pinczuk, A., Gossard, A. C., and Wiegmann, W., Phys. Rev. Lett. 54, 2045 (1985).CrossRef
Pötz, W. and Kocevar, P., in Hot Carriers in Semiconductors: Physics and Applications (Boston, Academic Press, 1992), pp. 87–120.CrossRefGoogle Scholar
Brown, R. J., Kelly, M. J., Pepper, M., Ahmed, H., Hasko, D. G., Peacock, D. C., Frost, J. E. F., Ritchie, D. A., and Jones, G. A. C., J. Phys.: Cond. Matter 1, 6285 (1989).
Timp, G., Behringer, R., Sampere, S., Cunningham, J. E., and Howard, R. E., in Nanostructure Physics and Fabrication, eds. Reed, M. A. and Kirk, W. P. (Boston, Academic Press, 1989), p. 31.Google Scholar
Takagaki, Y. and Ferry, D. K., J. Phys.: Cond. Matter 4, 10421 (1992).
Berven, C., Wybourne, M. N., Ecker, A., and Goodnick, S. M., Phys. Rev. B 50, 14630 (1994).CrossRef
Smith, J. C., Berven, C., Goodnick, S. M., and Wybourne, M. N., Physica B 227, 197 (1997).CrossRef
Nixon, J. A., Davies, J. H., and Baranger, H. U., Phys. Rev. B 43, 12638 (1991).CrossRef
Wacker, A., Phys. Rev. B 49, 16785 (1994).CrossRef
Chau, R., Datta, S., Doczy, M., et al., IEEE Trans. Nanotechn. 4, 153 (2005).CrossRef
Moore, G., Electronics Mag. 38(8), 114 (April 1965).
Dennard, R. H., Gaennslen, F. H., Yu, H. N., et al., IEEE Trans. Sol. State Circ. 9, 256 (1974).CrossRef
Baccarani, G., Wordeman, M. R., and Dennard, R. H., IEEE Trans. Electron Dev. 31, 452 (1984).CrossRef
Frank, D. J., Laux, S. E., and Fischetti, M., IEDM Tech. Dig., 1992, pp. 553–556.
Hisamoto, D., Lee, W.-C., Kedzierski, J., et al., IEEE Trans. Electron Dev. 47, 2320 (2000).
Doyle, B. S., Datta, S., Doczy, M., et al., IEEE Electron Dev. Lett. 24, 263 (2003).CrossRef
Kavalieros, J., Doyle, B., Datta, S., et al., VLSI Symp. Dig. Tech. Papers, 2006, pp. 62–3.
Ramey, S. M. and Ferry, D. K., IEEE Trans. Nanotech. 2, 110 (2003).CrossRef
Shishir, R. and Ferry, D. K., submitted for publication.
Lundstrom, M. S., IEEE Electron Dev. Lett. 18, 361 (1997).CrossRef
Ono, Y., Takahashi, Y., Yamazaki, K., Nagase, M., Namatsu, H., Kurihara, K., and Murase, K., Proc. Int. Electron Dev. Mtg. (New York, IEEE Press, 1998), p. 123.Google Scholar
Kedzierski, J., Bokor, J., and Anderson, E., J. Vac. Sci. Technol. B 17, 3244 (1999).CrossRef
Cui, Y. and Lieber, C. M., Science 291, 851 (2001).CrossRef
Cui, Y., Zhong, Z., Wang, D., Wang, W. U., and Lieber, C. M., Nano Lett. 3, 149 (2003).CrossRef
Duan, X., Niu, C., Sahi, V., et al., Nature 425, 274 (2003).CrossRef
Koo, S.-M., Fujiwara, A., Han, J.-P., et al., Nano Lett. 4, 2197 (2004).CrossRef
Black, C. T., Appl. Phys. Lett. 87, 163116 (2005).CrossRef
Ahn, Y., Dunning, J., and Park, J., Nano Lett. 5, 1367 (2005).CrossRef
Goldberger, J., Hochbaum, A. I., Fan, R., and Yang, P., Nano Lett. 6, 973 (2006).CrossRef
Nguyen, P., Ng, H. T., Yamada, T., et al., Nano Lett. 4, 651 (2004).CrossRef
Ng, H. T., Han, J., Yamada, T., et al., Nano Lett. 4, 1247 (2004).CrossRef
Bryllert, T., Wernersson, L.-E., Fröberg, L. E., and Samuelson, L., IEEE Electron Dev. Lett. 27, 323 (2006).CrossRef
Bryllert, T., Wernersson, L.-E., Löwgren, T., and Samuelson, L., Nanotechnol. 17, S227 (2006).CrossRef
Lind, E., Persson, A. I., Samuelson, L., and Wernersson, L.-E., Nano Lett. 6, 1842 (2006).CrossRef
Tans, S. J., Verschueren, A., and Dekker, C., Nature 393, 49 (1998).CrossRef
Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, Ph., Appl. Phys. Lett. 73, 2447 (1998).CrossRef
Postma, H. W. Ch., Leepen, T., Yao, Z., Grifoni, M., and Dekker, C., Science 293, 76 (2001).CrossRef
Martel, R., Derycke, V., Lavoie, C., et al., Phys. Rev. Lett. 87, 256805 (2001).CrossRef
Appenzeller, J., Knoch, J., Derycke, V., et al., Phys. Rev. Lett. 89, 126801 (2002).CrossRef
Radosavljević, M., Heinze, S., Tersoff, J., and Avouris, Ph., Appl. Phys. Lett. 83, 2435 (2003).CrossRef
Appenzeller, J., Knoch, J., Radosavljević, M., and Avouris, Ph., Phys. Rev. Lett. 92, 226802 (2004).CrossRef
Palm, T. and Thylén, L., Appl. Phys. Lett. 60, 237 (1992).CrossRef
Janssen, T. J. B., Maan, J. C., Singleton, J., et al., J. Phys.: Cond. Matter 6, L163 (1994).
Hu, Q., Verghese, S., Wyss, R. A., et al., Semicond. Sci. Technol. 11, 1888 (1996).CrossRef
Worschech, L., Weidner, B., Reitzenstein, S., and Forchel, A., Appl. Phys. Lett. 78, 3325 (2001).CrossRef
Jones, G. M., Yang, C. H., Yang, M. J., and Lyanda-Geller, Y. B., Appl. Phys. Lett. 86, 073117 (2005).CrossRef
Datta, S., Ashley, T., Brask, J., et al., Proc. ICIST, Beijing, 2005.
Chau, R., Intel Corporation, http://download.intel.com/technology/silicon/Chau_DRC_062606.pdf.
Landauer, R., IBM J. Res. Develop. 1, 223 (1957).CrossRef
Child, C. D., Phys. Rev. (ser. 1) 32, 492 (1911).CrossRef
Langmuir, I., Phys. Rev. 2, 450 (1913).CrossRef
Shur, M. S. and Eastman, L. F., IEEE Trans. Electron Dev. 26, 1677 (1979).CrossRef
Barker, J. R., Ferry, D. K., and Grubin, H. L., IEEE Electron Dev. Lett. 1, 209 (1980).CrossRef
See, e.g., Martin, J. Saint, Bournel, A., and Dollfus, P., IEEE Trans. Electron Dev. 51, 1148 (2004).CrossRef
Lundstrom, M., Ren, Z., and Datta, S., 2000 SISPAD Tech. Dig., pp. 1–5, 2000.
Svizhenko, A. and Anantram, M. P., IEEE Trans. Electron Dev. 50, 1459 (2003).CrossRef
Kotylar, R., Obradovic, B., Matagne, P., Stettler, M., and Giles, M. D., Appl. Phys. Lett. 84, 5270 (2004).CrossRef
Gilbert, M. J. and Ferry, D. K., J. Appl. Phys. 95, 7954 (2004).CrossRef
Gilbert, M. J., Akis, R., and Ferry, D. K., J. Appl. Phys. 98, 094303 (2005).CrossRef
Akis, R., Gilbert, M. J., and Ferry, D. K., J. Phys. Conf. Series 38, 87 (2006).CrossRef
Zhou, X., Dayeh, S. A., Aplin, D., Wang, D., and Yu, E. T., Appl. Phys. Lett. 89, 053113 (2006).CrossRef
Pikus, F. G., and Likharev, K. K., Appl Phys Lett 71, 3661 (199).CrossRef
Datta, S., Superlatt. Microstuct. 28, 253 (2000).CrossRef
Knoch, J., Lengeler, B., and Appenzeller, J., IEEE Trans Elec Dev. 49, 1212 (2002).CrossRef
Gilbert, M. J. and Ferry, D. K., Superlatt. Microstruct. 34, 277 (2003).CrossRef
Johnson, D. D., Phys. Rev. B 38, 12807 (1988).CrossRef
Baglee, D. A., Ferry, D. K., Wilmsen, C. W., and Wieder, H. H., J. Vac. Sci. Technol. B 17, 1032 (1980).CrossRef
Gilbert, M. J. and Ferry, D. K., J. Appl. Phys. 95, 7954 (2004).CrossRef
Gilbert, M. J. and Ferry, D. K., IEEE Trans. Nanotechn. 4, 599 (2005).CrossRef
Gilbert, M. J. and Ferry, D. K., Superlatt. Microstruct. 34, 277 (2003).CrossRef
Ferry, D. K. and Grubin, H. L., in Solid State Physics 49, 283 (1995), eds. Ehrenreich, H. and Turnbull, H. (Boston, Academic Press, 1995).CrossRef
Jacoboni, C. and Reggiani, L., Rev. Mod. Phys. 55, 645 (1983).CrossRef
Ferry, D. K., Kann, M.-J., Kriman, A. M., and Joshi, R. P., Comp. Phys. Commun. 67, 119 (1991).CrossRef
Ferry, D. K., in Handbook of Semiconductors, Vol. 1, 2nd edn., ed. Landsberg, P. T. (Amsterdam, North-Holland, 1992), pp. 1039–78.Google Scholar
Prigogine, I., Acad. Roy. Belg., Bull. Classe Sci. 31, 600 (1945).
Blandin, A., Nourtier, A., and Hone, D. W., J. Physique 37, 369 (1976).CrossRef
Rammer, J. and Smith, H., Rev. Mod. Phys. 58, 323 (1986).CrossRef
Wagner, M., Phys. Rev. B 44, 6104 (1991); 45, 11595 (1992).CrossRef
Mahan, G. D., in Quantum Transport in Semiconductors, eds. Ferry, D. K. and Jacoboni, C. (New York, Plenum Press, 1992), pp. 101–40.CrossRefGoogle Scholar
Langreth, D. C., in Linear and Nonlinear Electron Transport in Solids, eds. Devreese, J. T. and Doren, E. (New York, Plenum Press, 1976).Google Scholar
Bertoncini, R., Kriman, A. M., and Ferry, D. K., Phys. Rev. B 41, 1390 (1990).CrossRef
Bertoncini, R., Kriman, A. M., and Ferry, D. K., Phys. Rev. B 44, 3655 (1991).CrossRef
Lipavský, P., piĉka, V., and Velický, B., Phys. Rev. B 34, 3020 (1986).CrossRef
McLennan, M. J., Lee, Y., and Datta, S., Phys. Rev. B43, 13846 91991).
Lee, Y., McLennan, M. J., Klimeck, G., Lake, R. K., and Datta, S., Superlatt. Microstruct. 11, 137 (1992).CrossRef
Meir, Y. and Wingreen, N. S., Phys. Rev. Lett. 68, 2512 (1992).CrossRef
Meir, Y., Wingreen, N. S., and Lee, P. A., Phys. Rev. Lett. 66, 3048 (1991).CrossRef
Jauho, A. P., Wingreen, N. S., and Meir, Y., Phys. Rev. B 50, 5528 (1994).CrossRef
See, e.g., Mujica, V., Kemp, M., and Ratner, M. A., J. Chem. Phys. 101, 6849 (1994), and references therein (we make no effort to be extensive in the list of references on this topic).CrossRef
Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J. I., and Kubiak, C. I., J. Chem. Phys. 109, 2874 (1998).CrossRef
Hall, L., Reimers, J. R., Hush, N. S., and Silverbrook, K., J. Chem. Phys. 112, 1510 (2000).CrossRef
Ventra, M. Di, Pantelides, S. T., and Lang, N. D., Phys. Rev. Lett. 84, 979 (2000).CrossRef
Dahlke, R. and Schollwöck, U., Phys. Rev. B 69, 085324 (2004).CrossRef
Speyer, G., Akis, R., and Ferry, D. K., J. Vac. Sci. Technol. B 24, 1987 (2006).CrossRef
Speyer, G., Akis, R., and Ferry, D. K., J. Phys. Conf. Series 38, 25 (2006).CrossRef
Carlo, A. Di and Lugli, P., Semicond. Sci. Technol. 10, 1673 (1995).CrossRef
Carlo, A. Di, Pescetelli, S., Paciotti, M., Lugli, P., and Graf, M., Sol. State Commun. 98, 803 (1996).CrossRef
Carlo, A. Di, Pescetelli, S., Kavorkin, A., Vladimirova, M., and Lugli, P., Phys. Stat. Sol. (b) 204, 275 (1997).3.0.CO;2-N>CrossRef
Solomon, G. C., Gagliardi, A., Pecchia, A., et al., J. Chem. Phys. 125, 184702 (2006), and references contained therein.CrossRef
Latessa, L., Pecchia, A., and Carlo, A. Di, IEEE Trans. Nanotechnol. 6, 13 (2007).CrossRef
Ordejón, P., Artacho, E., and Soler, J. M., Phys. Rev. B 53, 10441 (1996).CrossRef
Soler, J. M., Artacho, E., Gale, J. D., et al., J. Phys.: Cond. Matter 14, 2745 (2002).
Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., and Stokbro, K., Phys. Rev. B 65, 165401 (2002).CrossRef
Stokbro, K., Taylor, J., Brandbyge, M., and Ordejón, P., Ann. N. Y. Acad. Sci. 1006, 212 (2003).CrossRef
Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954).CrossRef
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRef
Kohn, W. and Sham, L., Phys. Rev. 140, A1133 (1965).CrossRef
Sankey, O. F. and Niklewski, D. J., Phys. Rev. B 40, 3979 (1989).CrossRef
Demkov, A. A., Ortega, J., Sankey, O. F., and Grumbach, M. P., Phys. Rev. B 52, 1618 (1995).CrossRef
Speyer, G., Akis, R., and Ferry, D. K., IEEE Trans. Nanotechnol. 4, 403 (2005).CrossRef
Lake, R. and Datta, S., Phys. Rev. B 45, 6670 (1992).CrossRef
Lake, R., Klimeck, G., and Datta, S., Phys. Rev. B 47, 6427 (1993).CrossRef
Brown, R. C., Klimeck, G., Lake, R. K., Frensley, W. R., and Moise, T., J. Appl. Phys. 81, 3207 (1997).
Lake, R., Klimeck, G., Bowen, R. C., and Javonivic, D., J. Appl. Phys. 81, 7845 (1997).CrossRef
Boykin, T. B., Klimeck, G., Bowen, R. C., and Lake, R., Phys. Rev. B 56, 4102 (1997).CrossRef
Boykin, T. B., Gamble, L. J., Klimeck, G., and Bowen, R. C., Phys. Rev. B 59, 7301 (1999).CrossRef
Klimeck, G., Bowen, R. C., Boykin, T. B., and Cwik, T. A., Superlatt. Microstruct. 27, 519 (2000).CrossRef
Boykin, T. B., Bowen, R. C., and Klimeck, G., Phys. Rev. B 63, 245314 (2001).CrossRef
Lee, S., Oyafuso, F., Allmen, P., and Klimeck, G., Phys. Rev. B 69, 045316 (2004).CrossRef
Zheng, Y., Rivas, C., Lake, R., Alam, K., Boykin, T. B., and Klimeck, G., IEEE Trans. Electron Dev. 52, 1097 (2005).CrossRef
Sandu, T., Klimeck, G., and Kirk, W. P., Phys. Rev. B 81, 7845 (1997).
Celeste, A., Cury, L. A., Portal, J. C., Allovon, M., Maude, D. K., Eaves, L., Davies, M., Heath, M., and Maldonado, M., Sol. State Electron. 32, 1191 (1989).CrossRef
Boykin, T. B., Kharche, N., Klimeck, G., and Korkusinski, M., J. Phys.: Cond. Matter 19, 036203 (2007).
Zheng, Y., Rivas, C., Lake, R., et al., IEEE Trans. Electron Dev. 52, 1097 (2005).CrossRef
Wang, J., Rahman, A., Ghosh, A., Klimeck, G., and Lundstrom, M., Appl. Phys. Lett. 86, 093113 (2005).CrossRef
Luisier, M., Schenk, A., Fichtner, W., and Klimeck, G., Phys. Rev. B 74, 205323 (2006).CrossRef
Fiori, G., Iannaccone, G., and Klimeck, G., IEEE Trans. Electron Dev. 53, 1782 (2006).CrossRef
Liang, G., Xiang, J., Kharche, N., et al., Nano Lett. 7, 642 (2007).CrossRef
Boykin, T. B., Luisier, M., Schenk, A., Kharche, N., and Klimeck, G., IEEE Trans. Nanotechnol. 6, 43 (2007).CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×