Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-28T14:41:04.376Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  05 June 2012

David K. Ferry
Affiliation:
Arizona State University
Stephen M. Goodnick
Affiliation:
Arizona State University
Jonathan Bird
Affiliation:
State University of New York, Buffalo
Get access

Summary

Nanostructures are generally regarded as ideal systems for the study of electronic transport. What does this simple statement mean?

First, consider transport in large, macroscopic systems. In bulk materials and devices, transport has been well described via the Boltzmann transport equation or similar kinetic equation approaches. The validity of this approach is based on the following set of assumptions: (i) scattering processes are local and occur at a single point in space; (ii) the scattering is instantaneous (local) in time; (iii) the scattering is very weak and the fields are low, such that these two quantities form separate perturbations on the equilibrium system; (iv) the time scale is such that only events that are slow compared to the mean free time between collisions are of interest. In short, one is dealing with structures in which the potentials vary slowly on both the spatial scale of the electron thermal wavelength (to be defined below) and the temporal scale of the scattering processes.

Since the late 1960s and early 1970s, researchers have observed quantum effects due to confinement of carriers at surfaces and interfaces, for example along the Si/SiO2 interface, or in heterostructure systems formed between lattice-matched semiconductors. In such systems, it is still possible to separate the motion of carriers parallel to the surface or interface, from the quantized motion perpendicular, and describe motion semiclassically in the unconstrained directions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baccarani, G., Wordeman, M. R., and Dennard, R. H., IEEE Trans. Electron Dev. 31, 452 (1984).CrossRef
Mikkelson, J. M., Hall, L. A., Malhotra, L. A., Seccombe, S. D., and Wilson, M. S., IEEE J. Sol. State Circuits 16, 542 (1981).CrossRef
International Technology Roadmap, www.itrs.net.
Hoeneisen, B. and Mead, C. A., Sol.-State Electron. 15, 819, 891 (1972).CrossRef
Mead, C. A., J. VLSI Signal Processing 8, 9 (1995).CrossRef
Chau, R., Doyle, D., Doczy, M., et al., in the Proceedings of the 61st Device Research Conference, pp. 123–26, Salt Lake City, 23–25 June 2003.Google Scholar
Doris, B.et al., Technical Digest of the IEEE International Device Meeting, 2001, 937.
Yu, B.et al., Technical Digest of the IEEE International Device Meeting, 2002, 267.
Barker, J. R. and Ferry, D. K., Sol.-State Electron. 23, 519, 531 (1980).CrossRef
These are reviewed by Heiblum, M., in High Speed Electronics, eds. Kallback, B. and Beneking, H. (Berlin, Springer-Verlag, 1986), and by Hayes, J. R., Levi, A. J. F., Gossard, A. C, and English, J. H., in High Speed Electronics, eds. Kallback, B. and Beneking, H. (Berlin, Springer-Verlag, 1986).
Gilbert, M. J., Akis, R., and Ferry, D. K., J. Appl. Phys. 98, 094303 (2005).CrossRef
Mott, N. F., Philos. Mag. 22, 7 (1970).CrossRef
Thouless, D. J., Phys. Rept. 13C, 93 (1974); Edwards, J. T. and Thouless, D. J., J. Phys. C5, 807 (1972); Licciardello, D. C. and Thouless, D. J., J. Phys. C 8, 4157 (1975); Thouless, D. J., Phys. Rev. Lett. 39, 1167 (1977).CrossRef
Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V., Phys. Rev. Lett. 42, 673 (1979).CrossRef
Landauer, R., IBM J. Res. Develop. 1, 223 (1957); Philos. Mag. 21, 863 (1970).CrossRef
Wees, B. J., Houten, H., Beenakker, C. W. J., et al., Phys. Rev. Lett. 60, 848 (1988).CrossRef
Wharam, D. A., Thornton, T. J., Newbury, R., et al., J. Phys. C 21, L209 (1988).
Imry, Y., in Directions in Condensed Matter Physics, eds. Grinstein, G. and Mazenko, E. (Singapore, World Scientific Press, 1986), pp. 103–163.Google Scholar
Aharonov, Y. and Bohm, D., Phys. Rev. 115, 485 (1959).CrossRef
Webb, R. A., Washburn, S., Umbach, C. P., and Laibowitz, R. B., Phys. Rev. Lett. 54, 2596 (1985).
Ishibashi, K., Takagaki, Y., Gamo, K., et al., Sol. State Commun. 64, 573 (1987).CrossRef
Mankiewich, P. M., Behringer, R. E., Howard, R. E., et al., J. Vac. Sci. Technol. B6, 131 (1988).CrossRef
Ford, C. J. B., Thornton, T. J., Newbury, R., et al., J. Phys. C 21, L325 (1988).
Ferry, D. K., Semiconductors (New York, Macmillan, 1991).Google Scholar
Ferry, D. K. and Grubin, H., in Solid-State Physics, eds. Ehrenreich, H. and Turnbull, W. (New York, Academic Press, in press).
Leong, M., Wong, H.-S., Nowak, E., Kedzierski, J., and Jones, E., ISQED2002, 492 (2002).
Chau, R., et al., IEEE Trans. Nanotechnol. 4, 153 (2005).CrossRef
Sols, F., Macucci, M., Ravaioli, U., and Hess, K., J. Appl. Phys. 66, 3892 (1989).CrossRef
Datta, S., Superlatt. Microstruct. 6, 83 (1989).CrossRef
Weisshaar, A., Lary, J., Goodnick, S. M., and Tripathi, V. K., IEEE Electron Device Lett. 12, 2 (1991).CrossRef
Worschech, L., Weidner, B., Reitzenstein, S., and Forchel, A., Appl. Phys. Lett. 78, 3325 (2001).CrossRef
Hieke, K. and Ulfward, M., Phys. Rev. B 62, 16727 (2000).CrossRef
Likharev, K. K., Proc. IEEE 87, 606 (1999).CrossRef
Likharev, K., IBM J. Res. Develop. 32, 144 (1988).CrossRef
Geerligs, L. J., Anderegg, V. F., Holweg, P. A. M., et al., Phys. Rev. Lett. 54, 2691 (1990).CrossRef
Kouwenhouven, L. P., Johnson, A. T., Vaart, N. C., Harmans, C. J. P. M., and Foxon, C. T., Phys. Rev. Lett. 67, 1626 (1991).CrossRef
Pothier, H., Lafarge, P., Urbina, C., Esteve, D., and Devoret, M. H., Europhysics Lett. 17, 249 (1992).CrossRef
Kim, D. H., Sung, S.-K., Kim, K. R., et al., IEEE Trans. ED 49, 627 (2002).CrossRef
Cui, Y. and Lieber, C. M., Science 291, 851 (2001).CrossRef
Martel, R., Derycke, V., Lavoie, C., et al., Phys. Rev. Lett. 87, 256805 (2001).CrossRef
Reed, M. A., Randall, J. N., Aggarwal, R. J., et al., Phys. Rev. Lett. 60, 535 (1988).CrossRef
Zhuang, L., Guo, L., and Chou, S. Y., Appl. Phys. Lett. 72, 1205 (1998).CrossRef
Kim, D. H., Sung, S.-K., Kim, K. R., et al., IEEE Trans. ED 49, 627 (2002).CrossRef
Hiruma, K., Yazawa, M., Katsuyama, T., et al., J. Appl. Phys. 77, 447 (1995).CrossRef
Dai, H., Wong, E. W., Lu, Y. Z., Fan, S., and Lieber, C. M., Nature 375, 769 (1995).CrossRef
Cui, Y., Duan, X., Hu, J., and Lieber, C. M., J. Phys. Chem. B104, 5213 (2000).CrossRef
Björk, M. T., Ohlsoon, B. J., Sass, T., et al., Appl. Phys. Lett. 80, 1058 (2002).CrossRef
Björk, M. T., Ohlsoon, B. J., Sass, T., et al., Nano Lett. 2, 87 (2002).CrossRef
Cui, Y., Zhong, Z., Wang, D., Wang, W. U., and Lieber, C. M., Nano Lett. 3, 149 (2003).CrossRef
Duan, X., Niu, C., Sahl, V., et al., Nature 425, 274 (2003).CrossRef
Björk, M. T., Ohlsoon, B. J., Thelander, C., et al., Appl. Phys. Lett. 81, 4458 (2002).CrossRef
Thelander, C., Martensson, T., Björk, M. T., et al., Appl. Phys. Lett. 83, 2052 (2003).CrossRef
Zhong, Z., Wang, D., Cui, Y., Bockrath, M. W., and Lieber, C. M., Science 302, 1377 (2003).CrossRef
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., Science of Fullerenes and Carbon Nanotubes (New York, Academic Press, 1996).Google Scholar
Dürkop, T., Getty, S. A., Cobas, E., and Fuhrer, M. S., Nano Lett. 4, 35 (2004).CrossRef
Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H., Nature 424, 654 (2003).CrossRef
See for example McEuen, P. L., Fuhrer, M. S., and Park, H., IEEE Trans. on Nanotechnology 1, 78 (2002).
Reed, M. A., ed., Nanostructured Systems (New York, Academic Press, 1992).Google Scholar
Cerdeira, H. A., Lopez, F. Guinea, and Weiss, U., eds., Quantum Fluctuations in Mesoscopic and Macroscopic Systems (Singapore, World Scientific Press, 1990).Google Scholar
Namba, S., Harnaguchi, C., and Ando, T., eds., Science and Technology of Mesoscopic Structures (Tokyo, Springer-Verlag, 1992).CrossRefGoogle Scholar
Altshuler, B. L., Lee, P. A., and Webb, R. A., eds., Mesoscopic Phenomena in Solids (Amsterdam, North-Holland, 1991).Google Scholar
Fetter, A. L. and Walecka, J. D., Quantum Theory of Many-Particle Systems (New York, McGraw-Hill, 1971).Google Scholar
Kadanoff, L. P. and Baym, G., Quantum Statistical Mechanics (New York, Benjamin, 1962).Google Scholar
Mahan, G. D., Many-Particle Physics (New York, Plenum Press, 1981).Google Scholar
Abrikosov, A. A., Gorkov, L. P., and Dzyaloshinskii, I. Y e., Quantum Field Theoretical Methods in Statistical Physics, 2nd edn. (Oxford, Pergamon Press, 1965).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×