Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-23T06:18:43.148Z Has data issue: false hasContentIssue false

9 - Phase Diagrams for Real Systems

Published online by Cambridge University Press:  05 June 2012

J. P. O'Connell
Affiliation:
University of Virginia
J. M. Haile
Affiliation:
Macatea Productions, South Carolina
Get access

Summary

With many million pure substances now known, an essentially infinite number of mixtures can be formed, resulting in a diversity of phase behavior that is overwhelming. Consider just two components: not only can binary mixtures exhibit solid-gas, liquid-solid, and liquid-gas equilibria, but they might also exist in liquid-liquid, solid-solid, gas-gas, gas-liquid-liquid, solid-liquid-gas, solid-solid-gas, solid-liquid-liquid, solid-solid-liquid, and solid-solid-solid equilibria. That's a dozen different kinds of phase equilibrium situations—just for binary mixtures. For multicomponent mixtures the possibilities seem endless.

In this chapter we describe the kinds of phase behavior that are commonly observed in pure fluids, binary mixtures, and some ternary mixtures. The descriptions typically take the form of phase diagrams, and we show how studies of phase behavior can be made systematic by identifying classes of diagrams. Since we are interested in describing what is actually seen, the mixture diagrams presented in this chapter are plotted in terms of measurables: usually temperature, pressure, composition, or a subset of those. Calculations of phase equilibria necessarily involves conceptuals, and such calculations are discussed in Chapter 10. Here we only describe phenomena.

We start in § 9.1 by giving prescriptions for determining the number of properties needed to identify the thermodynamic state in multicomponent mixtures. Those prescriptions include Duhem's theorem and the Gibbs phase rule as special cases. The required number of properties determines the dimensionality of the state diagram needed to represent phase behavior.

Type
Chapter
Information
Thermodynamics
Fundamentals for Applications
, pp. 366 - 418
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×