Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-23T06:27:31.578Z Has data issue: false hasContentIssue false

8 - Criteria for Observability

Published online by Cambridge University Press:  05 June 2012

J. P. O'Connell
Affiliation:
University of Virginia
J. M. Haile
Affiliation:
Macatea Productions, South Carolina
Get access

Summary

During the design and operation of chemical processes, we routinely propose a state for a system by specifying a temperature, pressure, composition, and phase. Then the question is, Can the system be brought to that state? This is a question of observability. In many situations, particularly those involving multicomponent mixtures, the answer is not at all obvious. For example, at certain values for T and P, mixtures of phenol and water can undergo drastic phase changes in response to slight changes in composition: a mixture of phenol in water might be a one-phase vapor, or a one-phase water-rich liquid, or a phenol-rich liquid in equilibrium with a water-rich liquid, or it might be in three-phase vapor-liquid-liquid equilibrium.

In the previous chapter we derived criteria for identifying equilibrium states; for example, in a closed system at fixed T and P, the equilibrium state is the one that minimizes the Gibbs energy. That minimization is equivalent to satisfying the equality of component fugacities. More generally, we derived criteria for thermal, mechanical, and diffusional equilibrium in open systems. But although those criteria can be used to identify equilibrium states, they are not always sufficient to answer the question of observability. Observability requires stability. Thermodynamic states can be stable, metastable, or unstable; a stable equilibrium state is always observable, a metastable state may sometimes be observed, and an unstable state is never observed.

Type
Chapter
Information
Thermodynamics
Fundamentals for Applications
, pp. 310 - 365
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×